• 제목/요약/키워드: Solar Lighting System

검색결과 122건 처리시간 0.022초

반사판의 폭 조절이 가능한 서랍형 타입의 가동형 광선반 개발 연구 (Development of a Movable Drawer Type Light-Shelf with Adjustable Depth of the Reflector)

  • 김다솜;이행우;서장후;김용성
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.343-349
    • /
    • 2016
  • Due to the recent increase in lighting energy consumption in buildings, there are a growing number of studies seeking solutions this problem. The effectiveness of light-shelves as natural lighting systems to solve this problem has been recognized, and various studies regarding such systems are being carried out currently. However, the lighting efficiency of light-shelves decreases if illumination intensity is low-such as at night time, and it also obstructs the views of building occupants. Therefore, the purpose of this study is to examine a movable drawer type light-shelf which allows for the width of the reflector to be adjusted and verify its performance through a simulated test-bed. The following conclusions were reached. 1) The purpose of this study is to solve the problem previously associated with the light-shelf system- of obstructed views-by responding to external environments and minimizing the width of the light-shelf at night time when the efficiency of the light-shelf declines. 2) The proper variables of the movable drawer type light-shelf which enables the width adjustment of the reflector were ascertained in this study according to four solar terms : a width of 0.6 m at an angle of $20^{\circ}$, a width of 0.4m with an angle of $20^{\circ}$, and a width of 0.1 m with an angle of $20^{\circ}$ were determined for the summer solstice, fall/spring equinoxes, and winter solstice respectively; revealing that width adjustment of the light-shelf is a significant factor. 3) The movable drawer type light-shelf which enables${\backslash}$width adjustment of the reflector suggested in this study can reduce the lighting energy consumption by 18.7% and 14.3% in comparison to previous light-shelves with a fixed width of 0.3 m and 0.6m, indicating that it is effective for saving energy.

AHP 방법을 이용한 노후학교 에너지절감을 위한 요소기술의 우선순위 결정 (Determining the Priority of Factors for Reducing Energy at Deteriorated School Buildings Using AHP Method)

  • 이상춘;최영준;최율
    • KIEAE Journal
    • /
    • 제11권6호
    • /
    • pp.127-132
    • /
    • 2011
  • Since the late 20th century, countries of the world have made every effort to solve environmental problems due to global warming. The Korean Government has also made various efforts on reducing energy and $CO_2$ emission under the motto of "Low-Carbon Green Growth". In order to achieve the goal to reduce energy in the construction field, severe design standards and regulations on saving energy in new buildings have been established. However, for maximizing the reduction of energy in buildings, it is time to focus on deteriorated buildings where applications of energy saving designs and techniques have been insufficient. Especially, there are little guidelines and researches on reducing energy through remodeling at deteriorated school buildings which were built over 20 years ago. This paper suggests the priority of factors to reduce energy on the remodeling process at deteriorated school buildings using the AHP(Analytic Hierarchy Process) method. For applying the AHP method, the survey of staffs in the Education Offices and board members in the Korea Institute of Ecological Architecture and Environment was conducted via e-mail. As a result, factors of insulation, daylighting, system control, and windows turned out important in the energy reducing remodeling process at deteriorated school buildings, while factors of artificial lighting, solar heating, ventilation, and system did relatively unimportant.

조광제어 시스템 적용시 실내조도의 변동예측을 위한 포토센서의 주광조도 분석 (Analyses on Photosensor Illuminance for Prediction of Fluctuating Illuminance by Daylight Dimming Control Systems)

  • 김수영
    • 설비공학논문집
    • /
    • 제22권11호
    • /
    • pp.788-797
    • /
    • 2010
  • This study examines the influence of fluctuating daylight illuminance on daylight dimming control systems. Field measurements were performed for a full-scale mocked-up model under various daylight conditions in winter. Fluctuating ranges for a partially-shielded photosensor were great when the variation of sky ratio was great. When solar altitude was lower the illuminance and fluctuating range of illuminance were great due to the influence of direct components of daylight and the interrefelction between surfaces in rear area of space. It implies that daylight dimming system would not function effectively, unless the desktop illuminance by daylight is enough. Fluctuation ranges of photosensor illuminance were lower than 50 lx under clear sky conditions, but they were greater than 100 lx under partly-cloudy sky conditions. It means that the fluctuation range of electric light output of lighting fixture would greater under the partly-cloudy conditions and cause potential visual annoyance to occupants. Outdoor vertical illuminance reaching the windows would be an effective factor that can be used to predict the fluctuation of photosensor signals for effective controls of daylight dimming system.

소형 창고형 공장 적용을 고려한 15와트 LED 조명과 40와트 태양광 패널을 활용한 가시광통신 송수신 시스템 분석 (Analysis of visible light communication system using 15 watt LED and 40 watt solar panel)

  • 우덕건;마리아판 비나야감;박종용;이종혁;김영민;차재상
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.608-614
    • /
    • 2018
  • ICT기술 확산과 더불어 효율적인 정보 운용을 위해 다양한 프로토콜의 근거리 무선통신기술이 적용되고 있다. 하지만 근거리 무선통신의 제한사항으로 인하여 주파수 혼선 및 창고형 공장 등 주파수 환경이 좋지 않은 곳에서 통신이 원활하지 못하다. 이에 대한 대안이 필요한 시점에 LED 기술의 발달과 빠른 보급을 통한 인프라 확충으로 LED 기반 가시광 통신이 대안으로 주목되고 넒은 분야에 확산되고 있다. 또한 신재생에너지 활성화에 맞춰 태양광 패널 또한 빠른 보급으로 인프라가 확충되어 있다. 이러한 상황에서 PD를 활용한 가시광 통신은 PD의 수신각도 및 주변 환경의 빛으로 인해 LoS가 확보되고 주변의 빛에 영향이 적은 초근거리 환경에서 제한적으로 적용되어 왔다. 이를 해결하고자 현재 인프라가 확충되어 있는 LED 조명과 수신 면적이 넓은 태양광 패널을 이용하여 가시광 통신을 구현하였으며, 주변 환경 빛에서도 정확한 데이터를 복원을 위한 회로를 제안하였다. 본 연구결과를 통해 태양광 패널을 수신부로 하는 가시광 통신 연구의 기반 자료로 활용 되어 가시광 통신이 더욱 넓게 응용될 것으로 기대한다.

환경 친화적 스마트 아웃도어 재킷제작 및 사용성 평가 (Eco-friendly Smart Outdoor Jacket Production and Usability Evaluation)

  • 이정란
    • 한국의류학회지
    • /
    • 제38권6호
    • /
    • pp.845-856
    • /
    • 2014
  • This study focused on the production and usability evaluation of smart outdoor jackets that are designed to provide convenience to middle-aged people by embedding devices for lighting and location tracing. The results were as follows. 1. Jacket power supplier was a assembled system composed of battery, charger, controller and switch. A solar cell was attached on the upper arm, and a wire type EL on the center line of a raglan sleeve along with a GPS on the left sleeve with a transparent vinyl pocket. The total weight of the jacket embedded with devices was 385-520g. 2. Operation of function, activity, acceptability, safety, convenience for device use, appearance, practical maintenance were selected based on an analysis of evaluation criteria of previous smart wear research. Criteria were narrowed to three major categories of satisfaction, appearance and maintenance. 3. Use satisfaction criterion consisted of wearable device functionality and physical, psychological use convenience. The evaluation indicated actual functionality. EL functions were especially effective and necessary. Convenience of use showed that a smart jacket was thought to be safe and the size was moderate regardless of age and gender. Outer appearance was satisfactory and respondents praised the color. The practical maintenance evaluation indicated that there was no challenge in doing the laundry since the solar battery and GPS were detachable. The practical use of smart outdoor jackets confirmed by fabric that was washable and dried quickly.

자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구 (Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory)

  • 박동윤;장성택;장성주
    • KIEAE Journal
    • /
    • 제13권5호
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

지속가능한 생태도시 및 생태마을에서의 거주자의 역할 (The Role of Residents for the Sustainable Ecopolis and Ecovillage)

  • 곽인숙
    • 대한가정학회지
    • /
    • 제39권6호
    • /
    • pp.109-122
    • /
    • 2001
  • This study was performed to identify the roles of residents for the environmentally sound and sustainable development, taco-polis(kologisches Bauen), eco-village and Symbiotic Housing. These buildings will achieve energy efficiency through design strategies such as passive solar heating system, natural cooling and day lighting. Their infrastructure will feature parking on the periphery, extensive pedestrian paths, outdoor ground lights that preserve stellar visibility, and environmentally sensitive technologies such as low writer use fixtures. And they will restore biodiversity while protecting the wildlife, wetlands, forests, soil, air and water. Their houses wile be designed to support home-based occupations, offering high-speed Internet access and other options to promote a localized, sustainable economy. To support and encourage the evolution of sustainable settlements, it is necessary to prepare constructing the physical facilities and the social functions relating with residents. The roles of residents are important to provide a high Quality lifestyle and to integrate a supportive social environment with a low-impact way of life. This study concluded the four main roles of residents for the sustainable of Eco-polis and Ecovillage. 1. Residents assist transition towards a sustainable society as eco-conscious consumers in the planning stage. 2. Residents live in a ecological way for the sustainable ecovillage. 3. Residents exchange information and education for increasing the community glue as a communication network. 4. Residents support and transmit their cultural vitality and tradition for the next generation. So, users are expected to encourage resident's participation in the planning, design, ongoing management and maintenance of the sustainable ecovillage.

  • PDF

제로 에너지 건축물을 위한 자립형 저전력 IoT 센서 모듈 개발에 대한 연구 (A Study on Development of Independent Low Power IoT Sensor Module for Zero Energy Buildings)

  • 강자윤;조영찬;김희준
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.273-281
    • /
    • 2019
  • 국가 총에너지 소비량 중 건축물에서 소비하는 에너지는 전체의 10% 이상을 차지고 있다. 이러한 이유로 우리나라는 2025년부터 제로에너지 건물 의무화 정책을 채택하였고, 결국 건축물 에너지 절감 기술에 대한 연구가 요구되고 있다. 건축물 중 빌딩의 에너지 소비 형태를 분석해보면 조명 및 냉난방 에너지가 전체 에너지 소비량의 60% 이상을 차지하고 있는데, 이는 태양광 취득률 및 창문의 개폐 운용과 직접적인 연관이 있다. 본 논문에서는 건축물에너지 관리시스템에 취득 정보를 전송하기 위한 창호용 저전력 IoT 센서 모듈을 개발하기 위해 연구를 진행하였다. 이 모듈은 외부 환경 및 창문 개폐 상태 정보를 실시간으로 빌딩 에너지 관리 시스템에 전송하여 능동적으로 에너지 절감 조치를 취할 수 있게 네트워크를 구성하였다. 모듈에 사용되는 전력은 하베스트 에너지 중 태양광 발전을 이용한 독립적인 전원으로 설계하였다. 전원은 Buck 컨버터를 적용하여 MPPT 제어를 통해 리튬이온 배터리에 4V로 충전하는 방식으로 효율은 약 85.87%이다. 통신은 WiFi 방식을 적용하여 실시간으로 전송할 수 있도록 구성하였다. 모듈의 소비전력 저감을 위해 하드웨어 및 소프트웨어 측면에서 분석하여 저전력 IoT 센서 모듈을 구현에 대한 연구를 진행하였다.

솔레노이드 전압변화에 따른 사각뿔 구조체의 크기변화 경향 분석에 관한 연구 (A study on size variation of quadrangular pyramid structure according to input voltage of solenoid indentation system)

  • 문승환;정지영;한준세;최두선;최성대;전은채;제태진
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.40-44
    • /
    • 2019
  • The light diffusion component spreads the light from one point evenly over a large area. Various types of light diffusion parts such as films and lenses are applied in the high-tech industries such as LCD display devices, lighting devices, and solar energy generation. Among these, a diffuser sheet (Diffuser Sheet) has a function to uniformly distribute the light, and various studies have been conducted to improve its function. The shape of the conventional light diffusion pattern is mainly made of a dot or hemispherical shape. In this study, a rectangular cone-shaped structure having a light diffusion function and an advantage of controlling the angle of refraction of light was fabricated by using a solenoid indentation process. The change in shape of the indentation structure was analyzed.

Model of Water, Energy and Waste Management for Development of Eco-Innovation Park ; A Case Study of Center for Research of Science and Technology "PUSPIPTEK," South Tangerang City, Indonesia

  • Setiawati, Sri;Alikodra, Hadi;Pramudya, Bambang;Dharmawan, Arya Hadi
    • World Technopolis Review
    • /
    • 제3권2호
    • /
    • pp.89-96
    • /
    • 2014
  • Center for Research of Science and Technology ("PUSPIPTEK") has 460 hectares land area, still maintained as a green area with more than 30% green space. There are 47 centers for research and testing technology, technology-based industries, and as well as public supporting facilities in PUSPIPTEK area. Based on the concepts developed to make this area as an ecological region, PUSPIPTEK can be seen as a model of eco-innovation. The purpose of this research is to develop a model of water, energy and waste management with eco-innovation concept. As a new approach in addressing environmental degradation and maintaining the sustainability of ecosystem, studies related to eco-innovation policy that combines the management of water, energy and waste in the region has not been done. In order to achieve the objectives of the research, a series of techniques for collecting data on PUSPIPTEK existing conditions will be carried out, which includes utilities data (water, electricity, sewage) and master plan of this area. The savings over the implementation of the concept of eco-innovation in water, energy, and waste management were calculated and analyzed using quatitative methods. The amount of cost savings and feasibility were then calculated. Eco innovation in water management among other innovations include the provision of alternative sources of water, overflow of rain water and water environments utilization, and use of gravity to replace the pumping function. Eco-innovation in energy management innovations include the use of LED and solar cell for air conditioning. Eco-innovation in waste management includes methods of composting for organic waste management. The research results: (1) The savings that can be achieved with the implementation of eco innovation in the water management is Rp. 3,032,640 daily, or Rp.1,106,913,600 annually; (2) The savings derived from the implementation of eco innovation through replacement of central AC to AC LiBr Solar Powered will be saved Rp.1,933,992,990 annually and the use of LED lights in the Public street lighting PUSPIPTEK saved Rp.163,454,433 annually; (3) Application of eco innovation in waste management will be able to raise awareness of the environment by sorting organic, inorganic and plastic waste. Composting and plastic waste obtained from the sale revenue of Rp. 44,016,000 per year; (4) Overall, implementation of the eco-innovation system in PUSPIPTEK area can saves Rp. 3,248,377,023 per year, compared to the existing system; and (5)The savings are obtained with implementation of eco-innovation is considered as income. Analysis of the feasibility of the implementation of eco-innovation in water, energy, and waste management in PUSPIPTEK give NPV at a 15% discount factor in Rp. 3,895,228,761; 23.20% of IRR and 4.48 years of PBP. Thus the model of eco-innovation in the area PUSPIPTEK is feasible to implement.