• Title/Summary/Keyword: Solar Heat pump

검색결과 186건 처리시간 0.025초

수평형 지중열교환기의 열전달 성능에 관한 연구 (A Study on Heat Transfer Performance of Horizontal Ground Heat Exchanger)

  • 정민호;박성룡;나호상;백영진;윤형기;장기창
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.684-687
    • /
    • 2005
  • Ground source heat pump systems are used for heating, ventilating and air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating mode and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal type and vertical type according to the installation method. A horizontal type means that a heat exchanger is laid in the trench bored in 1.2 to 1.8 m depth. The solar heat and the rainwater are affected by the performance of heat exchanger and causes mutual influence among heat exchangers. In this study, to evaluate the performance of straight type, slinky type, and spiral type of horizontal ground heat exchangers designed on 1 RT scale, test sections are buried on the earth and experimental apparatus is installed. Therefore the performance of these is estimated.

  • PDF

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

태양에너지 해수담수화를 위한 3중 효용 증발식 담수기 개발 (Development of 3th Effects Evaporative desalination system for Solar Desalination System)

  • 황인선;주홍진;윤응상;곽희열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.201-201
    • /
    • 2010
  • The evaporative desalination system with solar energy would be the efficient and attractive method to get fresh water. This study was described the development of Multi Effect Distillation(MED) with solar energy desalination system. The system was designed and manufactured Multi effect distillation on the capacity of $3m^3$/day. The experimental apparatus consists mainly of ejector pump, Hot water pump, flow meter, demister, cooler, evaporator and condenser. Evaporator and condenser were made Shell&Tube Heat Exchanger type with corrugated tube. The experimental variables were chosen $75^{\circ}C$ for hot water inlet temperature, 40, 60 and $80{\ell}$/min for hot water inlet volume flow rate, 6.0 and $8.0{\ell}$/min for evaporator feed seawater flow rate, $18^{\circ}C$ for sea water inlet temperature to cover the average sea water temperature and the salinity of sea water is measured about 33,000 PPM (parts per million). for a year in Korea. This study was analyzed the results of thermal performance of Multi Effect Distillation. The results are as follows, The experimental Multi effect distillation is required about 40 kW heat source for production of $3m^3$/day fresh water. Various operating flow rate was confirm in the experiments to get the optimum design data and the results showed that the optimum total flow was $8.0{\ell}$/min. Comparison of Single Effect Distillation with Multi Effect Distillation showed MED is at least more than double of SED.

  • PDF

지열원히트펌프를 활용한 도로융설시스템의 성능 평가 및 예측 (An Evaluation and Prediction of Performance of Road Snow-melting System Utilized by Ground Source Heat Pump)

  • 최덕인;황광일
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.138-145
    • /
    • 2012
  • Because of the climate changes and the development of building technologies, the cooling loads have been increased. Among the various renewable energies, geothermal energy is known as very useful and stable energy for heating and cooling of building. This study proposes a road snow-melting system of which heat is supplied from GSHP(Ground source heat pump) in viewpoint of the initial investment and annual running performance, which is also operating as a main facility of heating and cooling for common spaces. The results of this study is as followings. From the site measurement, it is found out that the road surface temperature above the geothermal heating pipe rose up to $5^{\circ}C$, which is the design temperature of road snow-melting, after 2 hours' operation and average COP(Coefficient of performance) was estimated as 3.5. The reliability of CFD has confirmed, because the temperature difference between results of CFD analysis and site measurement is only ${\pm}0.4^{\circ}C$ and the trend of temperature variation is quite similar. CFD analysis on the effect of pavement materials clearly show that more than 2 hours is needed for snow-melting, if the road is paved by ascon or concrete. But the road paved by brick is not reached to $5^{\circ}C$ at all. To evaluate the feasibility of snow-melting system operated by a geothermal circulation which has not GSHP, the surface temperature of concrete-paved road rise up to $0^{\circ}C$ after 2 hour and 40 minutes, and it does never increase to $5^{\circ}C$. And the roads paved by ascon and brick is maintained as below $0^{\circ}C$ after 12 hours geothermal circulation.

Si 태양전지 금속배선 공정을 위한 나노 Ag 잉크젯 프린터 제작 및 응용 (Manufacturing of Ag Nano-particle Ink-jet Printer and the Application into Metal Interconnection Process of Si Solar Cells)

  • 이정택;최재호;김기완;신명선;김근주
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.73-81
    • /
    • 2011
  • We manufactured the inkjet printing system for the application into the nano Ag finger line interconnection process in Si solar cells. The home-made inkjet printer consists of motion part for XY motion stage with optical table, head part, power and control part in the rack box with pump, and ink supply part for the connection of pump-tube-sub ink tanknozzle. The ink jet printing system has been used to conduct the interconnection process of finger lines on Si solar cell. The nano ink includes the 50 nm-diameter. Ag nano particles and the viscosity is 14.4 cP at $22^{\circ}C$. After processing of inkjet printing on the finger lines of Si solar cell, the nano particles were measured by scanning electron microscope. After the heat treatment at $850^{\circ}C$, the finger lines showed the smooth surface morphology without micropores.

꽃 저장용 냉장시스템과 태양열 복합형 급탕기 개발연구(I) (The R&D of hot water production by the combination of solar thermal and a large sized flower cooling system(I))

  • 정현채;김기선;선경호
    • 태양에너지
    • /
    • 제12권3호
    • /
    • pp.84-93
    • /
    • 1992
  • 본 연구에서는 꽃저장용 냉장시스템 등에 태양열을 이용할 수 있는 난방시스템을 조합하여 충분한 양의 고온을 확득하여 주택의 난방을 가능케 하는 시스템을 설계, 제작했다. 압축기는 기존의 압축기 냉각방식을 공냉식에서 수냉식으로 전환시켜 적절한 냉각효과의 증대는 물론 냉열을 회수하여 고온의 온수를 빠른 시간 내에 획득할 수 있는 시스템을 개발했다.

  • PDF

소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구 (A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools.)

  • 김지연;박효순;홍성희;김성실;허인구;서승직
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

대규모 고등학교의 냉난방 및 신재생에너지시스템 적용방안에 관한 연구 (A Study on the Application Plan of Air-Conditioning and New and Renewable Systems in the Large High Schools)

  • 김지연;박효순;김성실;서승직
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.564-574
    • /
    • 2009
  • The study is conducted to study a new, optimum and new and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and hot water supply energy saving efficiencies for educational facilities. Therefore, this research implemented a study on the new and renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 475.6 kW+highly efficient electronic cooling/heating device(EHP) 545.2 kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 261kW+solar heat collector $240\;m^2$+highly efficient electronic cooling/heating device(EHP) 759.8 kW.

해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구 (Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System)

  • 김삼열;박진영;박재홍
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

화학열펌프에 있어서의 무기수화물계 축열시스템에 관한 연구(I) - 탈수 축열 성능연구 - (A Study on the Heat Storage System for Chemical Heat Pump Using Inorganic Hydrates(I) - Heat Storage Characteristics -)

  • 박영해;김종식
    • 태양에너지
    • /
    • 제15권3호
    • /
    • pp.29-38
    • /
    • 1995
  • 본 연구는 화학열펌프 개발을 목적으로 비교적 고온영역에서 화학축열에 응용 가능 할 것으로 판단되는 무기수화물계 $Ca(OH)_2/CaO$ 가역 반응싸이클을 이용한 수화 탈수반응에 따른 충진층내 열이동에 대하여 실험적 검토를 행하였다. 그 결과 본 실험에서 얻은 열교환특성은 $Ca(OH)_2$ 열분해 탈수반응시 반응기 내의 시료층 상단부가 하단부에 비해 탈수반응이 느리게 진행되었으며 이러한 현상은 탈수반응이 하부에서 상부로 진행됨을 알 수 있었다. 또, 반응기내 반경방향에서의 $Ca(OH)_2$ 열분해 탈수반응에 따른 온도변화는 시료 중심부에서 상 하단부로 나타났으며 이는 열전도도에 의한 온도 강하로 중심부의 축열온도가 높음을 알 수 있었다.

  • PDF