• 제목/요약/키워드: Solar Air Heater

검색결과 50건 처리시간 0.024초

Fixed Bed Drying of Sugarcane Bagasse Using Solar Energy

  • Hyoung-Woo LEE;Hyun-Ook KIM;Dong-Hoon LEE;Don-Ha CHOI;Seung-Gyu KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권1호
    • /
    • pp.47-57
    • /
    • 2024
  • Solar energy is one of the most promising options for renewable energy and biomass is one of them. One of the main biomass sources, sugarcane bagasse, is produced annually in more than hundreds of nations worldwide exceeding 4.25 billion tons. To dry a 900-mm deep fixed bed of wet sugarcane bagasse, a solar air heater with a collector area of 2 m2 was installed. Between October 10th to 19th in Gwangju, South Korea, a 9-day drying period, the solar collector received a total of 496,145 kJ of solar radiation. During this time, 54.5 kg of water was extracted from 133 kg of wet sugarcane bagasse (average green moisture content of 47.6%w.b.). The estimated net heat from the evaporation of water removed during the dying period accounted for approximately 27% of the total solar radiation on the solar collector.

고온 태양열 공기식 흡수기의 충진재 변화에 따른 열전달 및 압력강하 성능 분석 (Honeycomb and Laminated Mesh as Open Volumetric Solar Receiver : Performance of Heat Transfer and Pressure Drop)

  • 조자현;이주한;강경문;서태범
    • 설비공학논문집
    • /
    • 제20권11호
    • /
    • pp.760-766
    • /
    • 2008
  • The characteristics of heat transfer and pressure drop of several different porous materials which can be used as inserts inside solar volumetric air receivers were experimentally investigated. Generally, porous materials were inserted into solar volumetric air receivers to increase the thermal performance. In the present work, honeycomb (diameter: 100 mm, thickness: 30 mm), laminated mesh (diameter: 100 mm, thickness: 1 mm) are considered as the inserts for the experiment. The experimental apparatus consists mainly of a cylindrical ceramic duct as a receiver and an electric heater as an energy source. This system is an intake open loop, which used as air of working fluid. The temperatures inside the ceramic tube are measured by thermocouples, which are installed at each layer of the porous materials. The pressure-drop experimental apparatus is fabricated alike the above experimental equipment. An acrylic tube is used like as the ceramic tube, which has the same specifications of the ceramic tube. The pressure drop of porous materials inserted in the acrylic tube is measured between front and rear of those by transmitter. The results show that the laminated mesh surpasses the honeycomb of heat transfer and pressure drop increase as the porous material thickness and Reynolds number.

다공성 물질을 이용한 공기용 태양열 집열기의 설계를 위한 이론적 연구 (A Theoretical Study for the Design of Solar Air Heaters Using Porous Material)

  • 황용하;박승호;김종억
    • 태양에너지
    • /
    • 제13권2_3호
    • /
    • pp.79-90
    • /
    • 1993
  • 본 연구에서는 다공성 물질을 이용한 공기용 태양열 집열기(Solar Air Heater)의 설계를 위한 이론적 해석을 하였다. 해석시 필요한 유리 덮개 및 다공성 매질의 파장에 따른 복사특성을 Visible Spectrometer 및 FT-IR로 측정하였다. 다공성 매질로 15 메쉬의 Stainless Steel Wire Screen을 대상으로 하였다. 열전달 현상은 1차원으로 가정하고, 열복사는 Two-Flux Model을 사용하여, 여러 경우의 유량 및 복사 물성치에 대한 집열기 내부에서의 공기온도 및 다공성 매질의 온도를 계산하여 이에 따른 집열기의 효율 등을 계산하였다. 결과로는 무광택 페인트 코팅이 된 경우가 좋은 복사특성을 보였고, 공기유량이 증가할수록, 알베도(Albedo)는 가시광선 영역에서는 작을수록, 적외선 영역에서는 클수록 집열기의 효율은 증가하였다. 다공성 매질의 두께는 0.001m가 적합함을 보였다. 본 연구에서 이는 광학적 두께(Optical Thickness)가 약 1 정도를 의미한다.

  • PDF

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

건축물 냉.난방 시스템에 따른 에너지 소비 특성 -서울 소재 A 대학교 건축물을 중심으로- (The Energy Consumption Characteristics of Building Accordance with Air-Conditioning and Heating System)

  • 박강현;차정훈;김수민
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.333-337
    • /
    • 2011
  • Central control air-conditioning systems are being replaced with individually controlled air-conditioning system in the university. The amount of growth of electricity consumption is due to the increasing demand of electric heat pump. In winter and summer, the energy consumption showed a tendency to increase. On the other hand, showed less energy in spring and autumn. Increase the amount of electricity than the degree of decline in gas consumption was higher. Can be considered as transitional phenomena. Because electric heat pump, gas driven heat pump and the absorption chiller-heater are used at the same time in some of the buildings.

  • PDF

투과율의 측정 및 이를 이용한 복사물성치의 계산 (Measurements of Transmittances and Calculations of Fundamental Radiative Properties)

  • 황용하;박승호;이영수
    • 태양에너지
    • /
    • 제14권2호
    • /
    • pp.29-37
    • /
    • 1994
  • 본 연구에서는 다공성 물질을 이용한 공기용 태양열 집열기에서 사용될 수 있는 유리덮개 및 다공성 매질의 파장에 따른 투과율(transmittance)을 UV-visible spectrophotometer및 FT-IR spectrometer을 이용하여 측정하였다. 유리의 경우에는 전자기 이론으로 유도된 투과율과 실험적 투과율을 비교하여 유리의 복소굴절율(complex refractive index)을 구하였다. 또한 분산이론(classical dispersion theory)으로부터 구한 이론적 복소굴절율과 비교하였다. 다공성 매질은 15 메쉬의 stainless steel wire screen을 여러 겹으로 겹쳐 이에 대한 투과율을 측정하였다. 그리고 two-flux모델을 사용하여 흡수계수(absorption coefficient) 및 후면산란 계수(backscattering coefficient)를 구하였다.

  • PDF

평판집열기(平板集熱機)를 이용(利用)한 고추 건조(乾燥)에 관(關)한 연구(硏究) (Red Pepper (Capsicum annum) Drying Using Flat-Plate Solar Collectors)

  • 김동만;김만수;장규섭
    • 농업과학연구
    • /
    • 제6권1호
    • /
    • pp.56-64
    • /
    • 1979
  • 고추 건조(乾燥)의 열원(熱源)으로 태양(太陽)에너지를 이용(利用)하기 위(爲)하여 가격(價格)이 저렴(低廉)한 두 종류(種類)의 평판집열장치(平板集熱裝置)를 설계제작(設計製作)하였으며 이의 이용(利用)에 따른 기본적(基本的)인 요소(要素)들을 분석(分析) 검토(檢討)하였고, 고추의 형태(形態)에 따라 건조시험(乾燥試驗)을 수행(遂行)한바 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. 대전지방(大田地方)에서의 집열기(集熱機)의 적정경사각(滴定傾斜角)은 1년(年)에 2번 조정(調整)할 경우, 하절기(夏節期)에는 약(約) ${\phi}-15^{\circ}$이고 동절기(冬節期)에는 약(約) ${\phi}+15^{\circ}$였다. 1년중(年中) 직달방향계수(直達方向係數)(Rb)는 집열기(集熱機)의 경사각(傾斜角) $33^{\circ}$에서 4월(月) 16일(日)부터 8월(月) 27일(日)까지를 제외(除外)하고는 1이상(以上)이었다. 2. 시험기간중(試驗期間中)의 외기(外氣) 및 각건조실(各乾燥室)의 조건(條件)은 외기(外氣)의 평균(平均) 온습도(溫濕度)가 $25.6^{\circ}C$, 52.6%RH, 대비건조실(對比乾燥室)이 $42.0^{\circ}C$, 74.2%RH였으며, 물가열식(加熱式)에서 가장 높았고 상대습도(相對濕度)는 공기가열(空氣加熱) 건조실(乾燥室)이 가장 낮았다. 3. 고추 건조(乾燥)에서 건조속도(乾燥速度)는 통고추는 물가열식(加熱式)이 2.3배(培)로 가장 빨랐고 다음이 공기가열식(空氣加熱式), 대비구(對比區) 천일노천구(天日露天區)의 순서(順序)였다. 가장 빠른 건조방법(乾燥方法)은 고추를 수평(水平)으로 절단(切斷)하여 물가열식(加熱式) 건조실(乾燥室)에서 건조(乾燥)시켰을 때였다. 4. 고추의 신미성분(辛味成分)인 capsaicine과 적색소(赤色素)인 capsanthine 함량(含量)은 건조과정중(乾燥過程中)에 약간 감소(減少)하였으나 건조제품(乾燥製品)의 질(質)에 영향(影響)을 미치는 정도(程度)가 아니었으며 건조처리별(乾燥處理別)로도 큰 차이(差異)를 보여 주지 않았다.

  • PDF

Analysis of Heating Characteristics Using Aluminum Multi-Layer Curtain for Protected Horticulture Greenhouses

  • Park, Bum-Soon;Kang, Tae-Hwan;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • 제40권3호
    • /
    • pp.193-200
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the energy saving effects and characteristics of plant growth in a greenhouse with an aluminum multi-layer curtain compared to a greenhouse with non-woven fabric. Method: The dimensions of both greenhouses $43m{\times}3.6m{\times}8m(L{\times}H{\times}W)$, and both used hot air heater systems for maintaining a constant temperature $15^{\circ}C$. Heating characteristics such as solar intensity, inside and ambient temperatures, and fuel consumption were measured and analyzed. Results: The changes of average temperature of both greenhouses during a 15-days (December 06 - 20) showed approximately $26^{\circ}C$ at around 2 pm when the ambient temperature was highest. The greenhouses were set by the heater to keep a temperature of $15^{\circ}C$ from 4 pm to 8 am the following day. The average heat loss (for 15 days) from the greenhouse with an aluminum multi-layer curtain was $161.2-268.4kJ/m^2{\cdot}h$ during the daytime and $152.3-198.1kJ/m^2{\cdot}h$ during the nighttime. The average heat loss (for 15 days) from the greenhouse with non-woven fabric was $155.7-258.9kJ/m^2{\cdot}h$ during the daytime and $144.9-207.0kJ/m^2{\cdot}h$ during the nighttime. The total heat loss (for one day) from the non-woven fabric system was $7,960kJ/m^2$($2,876kJ/m^2$ during the daytime, $5,084kJ/m^2$ during the nighttime). The heat supply over 36 days for the non-woven fabric system was higher than the aluminum multi-layer curtain system by $616.3-65,079.4kJ/m^2$. Conclusions: These results suggest that a greenhouse with an aluminum multi-layer curtain could save energy usage by 35% over a greenhouse with non-woven fabric.

설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011)

  • 한화택;이대영;김서영;최종민;백용규;김수민
    • 설비공학논문집
    • /
    • 제24권6호
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.