• Title/Summary/Keyword: Solar Air Heater

Search Result 50, Processing Time 0.02 seconds

Research on Thermal Performance by Different Fins in a Solar Air Heater (태양열 공기난방기에서 핀의 형상에 따른 열전달 성능 평가)

  • Choi, Hwi-Ung;Hong, Boo-Pyo;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.85-91
    • /
    • 2013
  • It is essential to reduce the amount of fossil fuel because facing with the natural problem such as a global warming. To achieve this goal, many of interests in the use of renewable energy is growing. Especially, as one of these renewable energy systems, a solar air heater invention has been conducted for enhancing the efficiency of solar air heater. According to this trend, scale-down sized experiment apparatus was constructed and performed for searching a proper fin and confirming the heat transfer performance by fin shape on constant heat condition to enhance efficiency of solar air heater. In this experiment, heat gain, convection heat transfer coefficient, number of transfer units, Nusselt number, Reynold's number, friction factor, performance factor were investigated in order to evaluate the thermal characteristics based on the real data obtained. By comparison with the each fin performance, a zigzag shape keeping a right angle to the plate had the highest value among them.

A Numerical Study on the Thermal Performance of a Solar Air Heater Depending on the Hole Configuration and Geometry in the Absorber Plate (태양열 공기가열기의 흡열판 홀 배치와 형상에 따른 열적 성능에 관한 수치해석적 연구)

  • Shin, Jae Hyuk;Boo, Joon Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.69-80
    • /
    • 2015
  • A series of numerical analyses was conducted to predict the thermal performance of a solar air heater depending on the hole configuration and geometry in the absorber plate. The planar dimensions of the prototype were 1 m (W) by 1.6 m (H), and the maximum air flow considered was $187m^3/h$. It was considered that protruding holes with a triangular opening in the absorber plate would invoke turbulence in the air flow to enhance the convection heat transfer. Six different hole configurations were investigated and compared with each other, while the hole opening height was considered as a design variable. Three-dimensional transient analyses were performed with a commercial software package on the airflow and heat transfer in the model. The numerical results were analyzed and compared from the view point of the outlet air temperature and its time response to derive the optimal hole pattern and hole opening height.

Performance of Solar Air Heaters (태양열공기가열기의 성능실험)

  • Cha, Jong-Hee;Song, Hi-Yul
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.5 no.2
    • /
    • pp.91-97
    • /
    • 1976
  • This study was concerned with performance of 2 types of black painted solar air heaters, one is finned type better, the other is mesh type. The performance test of heaters was made under the different operating conditions during winter season of December in Seoul area. It was analized and discussed by comparing the overall efficiency of 2 solar heaters at the same mass flow rate and ambient temperature. Experimental results show that finned type solar heater is better than mesh type from the point of view of design and heat removal efficiency. Finned-type solar air heater supplies hot air up to 30 degree centigrade above ambient temperature with an overall efficiency of 47 percent whilemesh type was 44 percent.

  • PDF

Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously (복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Choi, Hwi-Ung;Kim, Bu-Ahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.

Study on the Cooling System by Solar- powered Absorption- Type Chiller (태양열이용 흡수식냉동기에 의한 냉방장치 연구)

  • Kim, Hyo-Kyung;Kim, Moo-Geun;Jung, Si-Young
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 1983
  • This study aims at experimental investigation on the feasibility of solar cooling in the seoul area. The system is comprised of fiat plate collectors, storage tank, auxiliary heater and Li-Br absorption chiller. Characteristics of the chi lier and the solar contribution on cooling were obtained by experiment The results show that during the days of experiment('83.6.10-6.22, 8.17-8.19) space cooling could be achieved by using soiar energy and auxiliary heater Moreover, there were time intervals during the day when cooling was possible using solar energy only without the auxiliary heater.

  • PDF

Performance evaluation of bubble pump used on solar water heating system

  • Xuesong, Li;Park, Gi-Tae;Kim, Pil-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.416-422
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and their relationship with the solar radiation intensity. The theory analysis of design bubble pump has been given and the experiment result analysis has been included in the paper.

  • PDF

Operating characteristics of 3RT heat pumps

  • Moon, Chang-Uk;Choi, Kwang-Hwan;Yoon, Jung-In;Jeon, Min-Ju;Heo, Seong-Kwan;Sung, Yo-Han;Park, Sung-Hyeon;Lee, Jin-Kook;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.140-145
    • /
    • 2017
  • Newly designed vapor-injection heat pumps have been proposed and analyzed in the present study. An economizer-type vapor-injection (V-I) system has been employed as the standard system because of its reliability and simple control method. The V-I system has a re-cooler and re-heater for cooling and heating, respectively. Solar panels have been installed in the V-I heat pump as well as in the re-heater in order to enhance heating capacity and performance. R410A has been employed as a working fluid and performance analysis has been conducted under various conditions. Results are summarized as follows: (1) The V-I system with the re-cooler yielded a marginally higher coefficient of performance (COP) than the conventional V-I refrigeration system. (2) By increasing the re-cooler cooling capacity, enhanced system performance as compared to the conventional V-I system was observed. (3) The re-heater negatively affected the system performance; hence, the V-I heat pump with the re-heater yielded a lower COP than that of the conventional V-I heat pump used for heating. (4) Although the solar panels increased the system performance, this increase could not offset performance degradation by the re-heater.

A study on the solar assisted heating system with refrigerant as working fluid (냉매를 작동유체로 사용하는 태양열 난방시스템에 관한 연구)

  • Kim, Ji-Young;Ko, Gawng-Soo;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.37-44
    • /
    • 2005
  • An experimental study was conducted to analyze performance of a heating system with variation of control logic of the system. The system uses a solar as heat source and composed with heat pump that uses R-22 as working fluid. The difference between the developed system and the commercially available heating system is working fluid. The solar assisted heating system which was widely distributed in the market uses water as a working fluid. It could be freezing in case of the temperature drops down under freezing point. The anti-freezing fluids such as methyl-alcohol or ethylene-glycol are mixed with the water to protect the freezing phenomena. However, the system developed in this study uses a refrigerant as a working fluid. It makes the system to run under zero degree temperature conditions. Another difference of the developed system compare with commercial available one is auxiliary heating method. The developed system has removed an auxiliary electric heater that has been used in conventional solar assisted heating system. Instead of the auxiliary electric heater, an air source heat exchanger which generally used as an evaporator of a heat pump was adapted as a backup heating device of the developed system. As results, an efficiency of the developed system is higher than a solar assisted heat pump with auxiliary electric heater. The merit of the developed system is on the performance increment when the system operates at a lower solar energy climate conditions. In case of the developed system operates at a normal condition, COP of the solar collector driven heat pump is higher than the air source heat exchanger driven heat pump's.

Experimental Studies for Solar Drying System of Agricultural Products(I) - Solar drying characteristics for radish - (태양열 건조 시스템에 관한 실험적 연구(I) - 무우절편의 태양열 건조 특성 -)

  • Koh, Hak-Kyun;Kim, Yong-Hyeon;Song, Dae-Bin;Kim, Man-Soo
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.9-20
    • /
    • 1991
  • Experiments for drying radish were carried out to analyze the drying characteristics and quality evaluation between solar heated-air drying and natural air drying system. Solar heated-air drying system consists of a small fan, a solar air heater and a tunnel dryer. Simulation model for thermal environments of solar collector was developed to investigate the effect of solar radiation and airflow rate on thermal performance.

  • PDF

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF