• Title/Summary/Keyword: Sol-gel spin coating method

Search Result 159, Processing Time 0.024 seconds

Effect of buffer layers on preparation of Sol-Gel processed PZT thin films (Sol-Gel법에 의한 PZT박막 제조에서 완충층의 영향)

  • 김종국;박지련;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.307-314
    • /
    • 1998
  • PZT thin films were fabricated by the Sol-gel method. Starting materials used for the preparation of the stock solution were Pb-acetate trihydrate, Zr-normal propoxide and Ti-isopropoxide. 2-Methoxyethanol and iso-propanol were used for solution. For studying the diffusion of Pb ion into the substrates. We used bare Si substrate, $SiO_2/Si$ substrates which was produced by thermal oxidation and $TiO_2/SiO_2/Si$ which was mad by Sol-gel method. Densification and adhesion of thin films were observed by SEM. Phase formation of thin films and diffusion of Pb ion into the substrate were examined by XRD and ESCA, respectively. In the case of bare Si and $SiO_2/Si$ substrate, we obtained the perovskite phase at $700^{\circ}C$ and restricted a little the diffusion of Si ion into the film with $SiO_2$ buffer layer. In the case of $TiO_2/SiO_2/Si$, perovskite phase were obtained at $500^{\circ}C$ and the diffusion of Pb ion and Si ion were restriced.

  • PDF

The Structural and Optical Properties with Composition Variation of CdxZn1-xO Thin Films Prepared by Sol-Gel Method (Sol-Gel 방법으로 제작된 CdxZn1-xO 박막의 조성비에 따른 구조적 및 광학적 특성)

  • Cheon, Min Jong;Kim, Soaram;Nam, Giwoong;Yim, Kwang Gug;Kim, Min Su;Leem, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.583-588
    • /
    • 2011
  • $Cd_xZn_{1-x}O$ thin films were grown on quartz substrates by using the sol-gel spin-coating method. The mole fraction, x, of the $Cd_xZn_{1-x}O$ thin films was controlled from 0 to 1 by changes in the content ratio of the cadmium acetate dehydrate [$Cd{(CH_3COO)}_2{\cdot}2H_2O$] and zinc acetate dehydrate [$Zn{(CH_3COO)}_2{\cdot}2H_2O$]. The effects of the mole fraction on the morphological, structural, and optical properties of the $Cd_xZn_{1-x}O$ thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible spectroscopy. The $Cd_xZn_{1-x}O$ thin films exhibited the polygonal surface morphology and their grain size was increased ranging from 42.1 to 63.9 nm with the increase in the mole fraction. It was observed that the absorption bandgap of the $Cd_xZn_{1-x}O$ thin films decreased from 3.25 to 2.16 eV as the mole fraction increased and the Urbach energy ($E_U$) values changed inversely to the optical bandgap of the $Cd_xZn_{1-x}O$ thin films.

A study on the Improvement of Ferroeletric Characteristics of PZT thin film for FRAM Device (FRAM 소자용 PZT박막의 강유전특성에 관한 연구)

  • Lee, B.S;Chung, M.Y.;Shin, P.K.;Lee, D.C.;Lee, S.H.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1881-1883
    • /
    • 2005
  • In this study, PZT thin films were fabricated using sol-gel Processing onto $Si/SiO_2/Ti/Pt$ substrates. PZT sol with different Zr/Ti ratio(20/80, 30/70, 40/60, 52/48) were prepared, respectively. The films were fabricated by using the spin-coating method on substrates. The films were heat treated at $450^{\circ}C$, $650^{\circ}C$ by rapid thermal annealing(RTA). The preferred orientation of the PZT thin films were observed by X-ray diffraction(XRD), and Scanning electron microscopy(SEM). All of the resulting PZT thin films were crystallized with perovskite phase. The fine crystallinity of the films were fabricated. Also, we found that the ferroelectric properties from the dielectric constant of the PZT thin films were over 600 degrees, P-E hysteresis constant. And the leakage current densities of films were lower than $10^{-8}\;A/cm^2$. It is concluded that the PZT thin films by sol-gel process to be convinced of application for ferroelectric memory device.

  • PDF

A study on the PZT thin films for Non-volatile Memory (비휘발성 메모리용 강유전체 박막에 관한 연구)

  • Lee, B.S.;Park, J.K.;Kim, Y.W.;Park, K.S.;Kim, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1562-1564
    • /
    • 2003
  • In this study, PZT thin films were fabricated using sol-gel processing onto Si/$SiO_2$/Ti/Pt substrates. PZT sol with different Zr/Ti ratio(20/80, 30/70, 40/60, 52/48) were prepared, respectively. The films were fabricated by using the spin-coating method on substrates. The films were heat treated at $450^{\circ}C,\;650^{\circ}C$ by rapid thermal annealing(RTA). The preferred orientation of the PZT thin films were observed by X-ray diffraction(XRD), and Scanning electron microscopy(SEM). All of the resulting PZT thin films were crystallized with perovskite phase. The fine crystallinity of the films were fabricated. Also, we found that the ferroelectric properties from the dielectric constant of the PZT thin films were over 600 degrees, P-E hysteresis constant. And the leakage current densities of films were lower than $10^{-8}A/cm^2$. It is concluded that the PZT thin films by sol-gel process to be convinced of application for ferroelectric memory device.

  • PDF

Fabrication of PbZrO$_3$ thin films crystal by sol-gel processing (Sol-Gel법에 의한 PbZrO$_3$박막 결정의 제작)

  • 전기범;김원보;배세환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • $PbZrO_3$precursor was prepared for the spin coating on the Pt/Ti/$SiO_2$/Si substrate. Two different heat treatment methods were used and the differencies were studied. One of the method is that the films were inserted into the furnace for 30 minutes and the other is that the films were annealed by rapid thermal annealing (RTA) for 1 minute at the same temperatures. We also examined the tendency of crystallization by annealing at the fixed temperature, $700^{\circ}C$ as a function of time, namely during 1, 10, 20, and 30 minitues, respectively. The optimum conditions for the crystallization of these films were at $550^{\circ}C$ during 30 min. and at $700^{\circ}C$ during 10 min. in muffle furnace and at $650^{\circ}C$ during 1 min in RTA furnace. The best condition for making good quality grains needs 30 min. at $700^{\circ}C$.

  • PDF

PZT/LSMO/Pt Thin-Film by Pulse Laser and Sol-Gel Deposition (PZT/LSMO/Pt에 대한 펄스레이저 및 졸겔법에 의한 증착연구)

  • Choi, Kang-Ryong;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-24
    • /
    • 2005
  • This work is to present each properties and the interfacial characterization between PZT layer and LSMO layer of PZT/LSMO/Pt. LSMO thin film grown by KrF(248 nm) excimer lasers are used in pulsed in pulsed laser deposition(PLD). PZT coposites thin films were deposited by spin coating using a commercial resist spinner. LSMO thin film by deposition oxygen pressure 125 mtorr have rhombohedral structure on Pt(111) substrate. The PZT/LSM/Pt pre-orientate to [111] direction. The final thin films were shown that magnetic and electric property was typical value, respective. We report that the lattice between the PZT/LSMO thin film and the substrate plays a very important role and may control to another effects.

The Preparation and Electrical Characteristics of BST Thin Film by Spin-Coating Method (회전코팅법을 이용한 BST 박막의 제조 및 전기적 특성에 관한 연구)

  • Ki, Hyun-Chul;Kim, Duck-Keun;Lee, Seung-Woo;Hong, Kyung-Jin;Lee, Jin;Kim, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.918-920
    • /
    • 1999
  • Recently, the ceramics of high permittivity are applied to DRAM and FRAM. In this study, (Ba, Sr)$TiO_3$ (BST) ceramics thin films were prepared by Sol-Gel method. BST solution was made and spin-coated on Pt/$SiO_2$/Si substrate at 4000[rpm] for 10 seconds. Coating process was repeated 3 times and then sintered at $750[^{\circ}C]$ for 30 minutes. Each specimen was analyzed structure and electrical characteristics. Thickness of BST ceramics thin films are about $2000[\AA]$. Dielectric constant and loss of thin films was little decreased at $1[kHz]{\sim}1[MHz]$. Dielectric constant and loss to frequency were 250 and 0.02 in BST3. In accordance with applied voltage, property of leakage current was stability when the was $0{\sim}3$[V]. According to voltage, leakage current was increased exponentially at $4{\sim}7$[V].

  • PDF

The Dielectric Characteristics of ($Ba_x Sr_{l-x})TiO_3$ Thin Films by the Spin-Coating method (스핀코팅법에 의한 ($Ba_x Sr_{l-x})TiO_3$ 박막의 유전 특성에 관한 연구)

  • 기현철;장동환;홍경진;오수홍;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.132-135
    • /
    • 1999
  • Recently, the ceramics of high permittivity are applied to DRAM and FRAM. In this study, (B $a_{x}$ S $r_{l-x}$)Ti $O_3$(BST) ceramics thin films were prepared by Sol-Gel method. BST solution was made and spin-coated on Pt/ $SiO_2$/Si substrate at 4000 [rpm] for 10 seconds. Coated specimens were dried at 150[$^{\circ}C$] for 5 minutes. Coating process was repeated 3 times and then sintered at 750[$^{\circ}C$] for 30 minutes. Each specimen was analyzed structure and electrical characteristics. Thickness of BST ceramics thin films are about 2000($\AA$). Dielectric constant and loss of thin films was little decreased at 1[KHz] ~1[KHz]. Dielectric constant and loss to frequency were 250 and 0.02 in $Ba_{0.7}$S $r_{0.3}$Ti $O_3$. The properly of leakage current as the realation between the current and the voltage was that change of the leakage current was stable when the applied voltage was 0~3[V].

  • PDF

Photoluminescence Studies of ZnO Nanostructures Fabricated by Using Combination of Hydrothermal Method and Plasma-Assisted Molecular Beam Epitaxy Regrowth

  • Nam, Giwoong;Kim, Byunggu;Park, Youngbin;Kim, Soaram;Lee, Sang-Heon;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.202.1-202.1
    • /
    • 2013
  • ZnO nanostructure was fabricated on a Si substrate using two-step growth. The seed layer was grown on the Si substrate by a sol-gel spin-coating. In the first step, ZnO nanorods were grown by a hydrothermal method at $140^{\circ}C$ for 5 min. In the second step, a ZnO thin film was grown on the ZnO nanorods by spin-coating. After growth, these films were annealed at $800^{\circ}C$ for 10 min. Electrical and optical properties of ZnO nanostructures have modified by plasma-assisted molecular beam epitaxy (PA-MBE) regrowth. The carrier concentration and resistivity increased by PA-MBE regrowth. In the photoluminescence, the full width at half maximum and intensity were decreased and increased, respectively, by PA-MBE regrowth.

  • PDF

Characteristics and Deposition of CuInS2 film for thin solar cells via sol-gel method0 (Sol-gel법에 의한 박막태양전지용 CuInS2 박막의 증착과 특성)

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.158-163
    • /
    • 2011
  • $CuInS_2$ thin films were prepared using a sol-gel spin-coating method. That makes large scale substrate coating, simple equipment, easy composition control available. The structural and optical properties of $CuInS_2$ thin films that include less toxic materials (S) instead of Se, tetragonal chalcopyrite structure. Copper acetate monohydrate ($Cu(CH_3COO)_2{\cdot}H2O$) and indium acetate ($In(CH_3COO)_3$) were dissolved into 2-propanol and l-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 3000 rpm, and dried at $300^{\circ}C$ for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box and chalcopyrite phase of $CuInS_2$ was observed. To determine the optical properties measured optical transmittance of visible light region (380~770 nm) were less than 30 % in the overall. The XRD pattern shows that main peak was observed at Cu/In ratio 1.0 and its orientation was (112). As annealing temperature increases, the intensity of (112) plane increases. The unit cell constant are a = 5.5032 and c = 11.1064 $\AA$, and this was well matched with JCPDS card. The optical transmittance of visible region was below than 30 %.