• Title/Summary/Keyword: Soils

Search Result 6,570, Processing Time 0.04 seconds

Response of Microbe to Chemical Properties from Orchard Soil in Gyeongnam Province (경남지역 과수원 토양 화학성분이 미생물 생태에 미치는 영향)

  • Lee, Young-Han;Zhang, Yong-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.236-241
    • /
    • 2011
  • Soil microbial diversity was responsible for a strong effect on the chemical properties of orchard soils. This study evaluated a relationship between soil chemical properties and soil microbial diversities at 25 sites in orchard soils in Gyeongnam Province. The average nutrients in the orchard soils were 2.6 times for available phosphorous, 2.3 times for exchangeable potassium and 1.3 times for exchangeable calcium higher compared to recommend concentrations in the orchard soils. Contents of available phosphorous and organic matter in the inclined piedmont soils were higher than those in the other topographical soils (p<0.05). Populations of fungi and fluorescence Pseudomonas sp. in the silt loam soils were significantly higher than those in the sandy loam soils (p<0.05). In principal component analysis of chemical properties and microbial populations in the upland soils, our findings suggested that population of bacteria should be considered as potential factor responsible for the clear orchard soils differentiation. The soil organic matter was significantly negative correlation with population of bacteria whereas was positive correlation with population of fungi in orchard soils.

Physicochemical Characteristics and Microbial Activity in the Various Urban Soils (도시에서 다양한 토양의 물리화학적 특성과 미생물 활성)

  • Kong, Hak-Yang;Cho, Kang-Hyun
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.369-375
    • /
    • 2000
  • Although urban soils must be well understood in order to ensure their conservation and optimum use, these intensively managed and disturbed soils have not been extensively investigated up to now. Urban soils from forest, lawn, streetside, and bare ground and under pavement in Inchon had high bulk density as a result of widespread trampling-induced soil compaction. The various urban soils including forests showed lower water content and higher temperature as compared with rural forest soil. Chemically, soils from urban areas had an unusual neutral pH and low organic matter content. Total bacterial numbers in urban soils was only 5∼50% of that in the rural forest soil. An analysis of stepwise multiple regression revealed that soil organic matter was the most important predictor variable on total bacterial number. The dehydrogenase activity of most urban soils was not significantly different from that of rural forest soil, whereas the microbial activity of soils under pavement was lower. Our investigations show that inadequate organic matter of highly compacted soils has adversely affected the abundance of microorganisms involving nutrient cycling in urban soils.

  • PDF

Characteristics of Volcanic Ash Soils (화산회토(火山灰土)의 특성(特性)에 관(關)하여)

  • Shin, Yong Hwa;Kim, Hyong Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.113-119
    • /
    • 1975
  • Volcanic Ash Soils are widely distributed in Jeju island, and constitute the important upland soils which are either presently being cultivated or are suitable for reclaiming. The characteristics of Volcanic Ash Soils according to data made available by previous studies in Jeju and the outside of the country are as following: The most conspicuous mineralogical property is the presence of amorphous mineral colloids. The colloids have large and highly reactive surface to which the common physical and chemical properties are related. Soils are low in bulk density and higher both in porosity and permeability. Accumulation of humus in the upper part of soil is found in great quantity. Cation exchange capacity is high mainly due to high humus content, but the absorbing intensity of ammonium and potassium is weaker than that of crystalline clays. The phosphate absorption coefficient is extremely high and deficiency of minor element may occur both crops and animals. Soils are densely populated with actinomycetes and anaerobic bacteria. Nitrification and activity of urease are distinctly stronger than that of non-Volcanic Ash Soils.

  • PDF

Electrical Resistivity Variations of Contaminated Soils (오염토양의 전기 비저항치 변화 연구)

  • 윤길림;이용길
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.84-89
    • /
    • 2000
  • Parametric studies based on laboratory pilot tests were performed to investigate the relationships between electrical resistivity and contaminated soil properties. Three kinds of sandy soils sampled and leachates from a industrial waste landfill were mixed to model the contaminated soils. Electrical resistivity of soils were measured by using a simulated resistivity cone penetrometer probe. In the experiments, the electrical resistivity were observed with changing the water content, void ratio, unit weight, degree of saturation, and concentration of the leachate. The test results show that the electrical resistivity of soils depends largely on the water content and the electrical property of pore water rather than unit weight and types of soils.

  • PDF

[ $K_0$ ] consolidated triaxial tests for unsaturated weathered soils (불포화 풍화토의 $K_0$ 압밀 삼축압축실험)

  • Kim, Tae-Kyung;Oh, Se-Boong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.860-865
    • /
    • 2006
  • In order to predict the stability of slopes, it is important to evaluate shear strength of unsaturated soils. The triaxial tests were performed under $K_0$ conditions for unsaturated soils and the results were compared with those for saturated soils. In unsaturated soils, the secant modul and the shear strengths are larger than those of saturated soils because of matric suctions. However the shear strengths were not affected severely by stress conditions at consolidation.

  • PDF

Composition and Genesis of Volcanic Ash Soils in Jeju Island I. Physico-Chemical and Macro-Micromorphological Properties (제주도 화산회사인의 특성 및 생성에 관한 연구. I. 이화학 및 형태학적 특성)

  • ;George Stoops
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 1988
  • The effect of soil forming factors on the pedogenesis of basaltic volcanic ash soils and the influence of allophane material on soil properties have been investigated on 5 chronosequence soils situated from at the near sea coast up to the foot slope of Mt. Halla in Jeju Island. Time seems to be the important soil forming factor which today differentiates soil of the Island. Songag and Donghong soils developed in lower elevations are older and somewhat less influenced by ash shower. However, soils developed at higher elevations, Pyeongdae and Heugag, are rather younger and strongly influence by the ash. It is also proved that the parent materials are very heterogeneous. They mainly are basaltic with some contamination of acidic volcanic ashes and continental aeolian deposits where a considerable amount of quartz encountered in most soils studied. Many physico-chemical properties of soil, such NaF pH, phosphate sorption power, pH and extractable acidity are parameters to differentiate andepts and non-andeptic soils.

  • PDF

Weathering Indexes of Typical Pedons Derived from Different Parent Materials of the Soils of Korea

  • Jung, Yeong-Sang;Zhang, Yong-Seon;Joo, Jin-Ho;Jung, Yeon-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.179-186
    • /
    • 2014
  • Weathering indexes of the typical pedons derived from different parent materials of the soils of Korea were calculated by Kronberg and Nesbitt (1981) to understand weathering degree of the soils which might give a clue of soil formation and characterizing a soil pedon. The weathering index W1 was chemical change index, and the weathering index W2 was silicate dominant index. The chemical compositions of the 49 typic pedons were extracted from the Taxonomical Classification of Korean Soils (NIAST, 1999). The weathering indexes of Kimhae series, derived from fluvio marine material, were the highest among the analyzed soils. Within parent materials, the weathering indexes of the soils derived from limestones parent materials were high, and those derived from phorphyry materials were low. The relationship between W1 and W2 showed unique pattern which implied certain sequence within the same parent materials.

Anaerobic Biodegradation of PCP in Japanese Paddy Soils

  • Kim, Hyo-Keun;Inoue, Yasushi;Handa, Yuko;Yasuta, Tsuyoshi;Lee, Kyu-Seung;Katayama, Arata
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.138-141
    • /
    • 2004
  • Seven soil samples were collected from paddy fields located nearby Nagoya city in Japan. All the soils were subjected to flooded condition and incubated with PCP at $30^{\circ}C$ for two months, and their anaerobic PCP degradation have been monitored by checking the PCP concentration of the soils at regular intervals. The degradation of PCP did not occur in the soils autoclaved two times before pre-incubation. On the other hand, all the soils showed significant PCP degradation in non-sterilized condition after 30 days of incubation, except far one soil sample (Yatomi), in which PCP was rarely degraded until 30 days of incubation. This result showed PCP disappearance in the pad(rf soils was mainly caused by microbiological activity, and depended upon the physicochemical characteristics of the soils.

A Prediction and Characterization of the Spatial Distribution of Red Soils in Korea Using Terrain Analyses (지형분석을 통한 한국의 적색토 분포 예측 및 해석)

  • PARK, Soo Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.81-98
    • /
    • 2012
  • This research aims 1) to analyse the spatial occurrence of red soils, in Korea 2) to predict their spatial distribution using terrain analyses, and 3) to interpret results from the perspective of pedogeomorphological processes. Red soils (often called red-yellow soils) in Korea are frequently found on welldrained plains and gently sloping areas. These soils are widely believed paleo-soils that were formed under hot and humid climatic conditions in the past. The spatial distribution of red soils was derived from the soil map of Korea, and a DEM based soil prediction was developed, based on a continuity equation to depict water and material flows over the landscape. About 64.5% of the red soil occurrence can be explained by the prediction. Close examinations between surveyed and predicted red soil maps show few distinctive spatial features. Granitic erosional plains at the inland of Korea show comparatively low occurrence of red soils, which might indicate active geomorphological processes within the basins. The occurrence of red soils at limestone areas is more abundant than that of the predicted, indicating the influence of parent materials on the formation of red soils. At and around lava plateau at Cheulwon and Youncheon, the occurrence of red soils is underestimated, which might partly be explained by the existence of loess-like surface deposits. There are also distinctive difference of prediction results between northern and southern parts of Korea (divided by a line between Seosan and Pohang). The results of this research calls for more detailed field-based investigations to understand forming processes of red soils, focusing on the spatial heterogeneity of pedological processes, the influence of parent materials, and difference in uplift patterns of the Korean peninsula.

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.