• Title/Summary/Keyword: Soil-remediation

Search Result 793, Processing Time 0.022 seconds

Field Tests for Assessing the Bioremediation Feasibility of a Trichloroethylene-Contaminated Aquifer (관측정 자연표류 실험을 통한 트리클로로에틸렌(Trichloroethylene) 오염 지하수의 생물학적 복원 타당성 연구)

  • Kim Young;Kim Jin-Wook;Ha Chul-Yoon;Kim Nam-Hee;Hong Kwang-Pyo;Kwon Soo-Yul;Ahn Young-Ho;Ha Joon-Su;Park Hoo-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.38-45
    • /
    • 2005
  • The feasibility of stimulating in situ aerobic cometabolic activity of indigenous microorganisms was investigated in a trichloroethylene (TCE)-contaminated aquifer. A series of single-well natural drift tests (SWNDTs) was conducted by injecting site groundwater amended with a bromide tracer and combinations of toluene, oxygen, nitrate, ethylene and TCE into an existing monitoring well and by sampling the same well over time. Three field tests, Push-pull Transport Test, Drift Biostimulation Test, and Drift Surrogate Activity Test, were performed in sequence. Initial rate of toluene degradation was much faster than the rate of bromide dilution resulting from natural groundwater drift, indicating stimulation of indigenous toluene-oxidizing microorganisms. Transformation of ethylene, a surrogate probing overall activity of TCE transformation, was also observed, and its transformation results in the production of ethylene oxide, suggesting that some tolueneoxidizing microorganisms stimulated may express a orthomonooxygenase enzyme. Also in situ transformation of TCE was confirmed by greater retardation of TCE than bromide after the stimulation of toluene-oxidizing microorganisms. These results indicate that, in this environment, toluene and oxygen additions stimulated the growth and aerobic cometabolic activity of indigenous microorganisms expressing orthomonooxygenase enzymes. The simple, low-cost field test method presented in this study provides an effective method for conducting rapid field assessments and pilot testing of aerobic cometabolism, which has previously hindered application of this technology to groundwater remediation.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.