• Title/Summary/Keyword: Soil-remediation

Search Result 794, Processing Time 0.024 seconds

Remediation of Contaminated Ballast Gravels by Blasting Technology (Blasting에 의한 철도오염자갈의 재활용 연구)

  • Cho Young-Min;Park Duckshin;Choi Yoon;Lim Jong-Il;Lee Kyung-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.597-603
    • /
    • 2005
  • The remediation of railroad contaminated soil is gaining wide attention, recently. In railroad field, modification of diesel supply field, equipment of roll pad, FRP panel, and iron pannel under diesel locomotive storages are used for the prevention of contamination expansions. However, cheap and efficient remediation technology has not been suggested yet. In this study, the contaminated ballast was remediated by blasting technology. Because the contaminants mainly resides on the surface of ballast, blasting these contaminants make it available to recycle the ballast. We carried out the remediation of oil-contaminated ballasts using the blasting technology, and we could remediate them nicely. This technology is expected to be used for the cheap and quick remediation of contaminated ballast.

  • PDF

Role of Arbuscular Mycorrhizal Fungi in Phytoremediation of Soil Rhizosphere Spiked with Poly Aromatic Hydrocarbons

  • Gamal, H. Rabie
    • Mycobiology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Results from an innovative approach to improve remediation in the rhizosphere by encouraging healthy plant growth and thus enhancing microbial activity are reported. The effect of arbuscular mycorrhizal fungi (Am) on remediation efficacy of wheat, mungbean and eggplant grown in soil spiked with polyaromatic hydrocarbons (PAH) was assessed in a pot experiment. The results of this study showed that Am inoculation enhanced dissipation amount of PAHs in planted soil, plant uptake PAHs, dissipation amount of PAHs in planted versus unplanted spiked soil and loss of PAHs by the plant-promoted biodegradation. A number of parameters were monitored including plant shoot and root dry weight, plant tissue water content, plant chlorophyll, root lipid content, oxido-reductase enzyme activities in plant and soil rhizosphere and total microbial count in the rhizospheric soil. The observed physiological data indicate that plant growth and tolerance increased with Am, but reduced by PAH. This was reflected by levels of mycorrhizal root colonization which were higher for mungbean, moderate for wheat and low for eggplant. Levels of Am colonization increased on mungbean > wheat > eggplant. This is consistent with the efficacy of plant in dissipation of PAHs in spiked soil. Highly significant positive correlations were shown between of arbuscular formation in root segments (A)) and plant water content, root lipids, peroxidase, catalase polyphenol oxidase and total microbial count in soil rhizosphere as well as PAH dissipation in spiked soil. As consequence of the treatment with Am, the plants provide a greater sink for the contaminants since they are better able to survive and grow.

REMEDIATION OF GROUNDWATER CONTAMINATED WITH BENZENE (LNAPL) USING IN-SITU AIR SPARGING

  • Reddy, Krishna R.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.11-24
    • /
    • 2003
  • This paper presents the results of laboratory investigation performed to study the role of different air sparging system parameters on the removal of benzene from saturated soils and groundwater. A series of one-dimensional experiments was conducted with predetermined contaminant concentrations and predetermined injected airflow rates and pressures to investigate the effect of soil type and the use of pulsed air injection on air sparging removal efficiency. On the basis of these studies, two-dimensional air sparging remediation systems were investigated to determine the effect of soil heterogeneity on the removal of benzene from three different homogeneous and heterogeneous soil profiles. This study demonstrated that the grain size of the soils affects the air sparging removal efficiency. Additionally, it was observed that pulsed air injection did not offer any appreciable enhancement to contaminant removal for the coarse sand; however, substantial reduction in system operating time was observed for fine sand. The 2-D experiments showed that air injected in coarse sand profiles traveled in channels within a parabolic zone. In well-graded sand the zone of influence was found to be wider due to high permeability and increased tortuosity of this soil type. The influence zone of heterogeneous soil (well-graded sand between coarse sand) showed the hybrid airflow patterns of the individual soil test. Overall, the mechanism of contaminant removal using air sparging from different soil conditions have been determined and discussed.

  • PDF

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • ;;Rameshwar;Tatavarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

Performance Evaluation of the Multistage Soil Washing Efficiency for Remediation of Mixed-contaminated Soil with Oil and Heavy Metals (유류/중금속 복합오염토양 정화를 위한 다단 토양세척 효율평가)

  • Kim, Daeho;Park, Kwangjin;Cho, Sungheui;Kim, Chikyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • In typical remediation practices, separate washing systems have to be applied to clean up the soils contaminated with both oil and heavy metals. In this study, we evaluated the efficiency of successive two-stage soil washing in removal of mixed-contaminants from soil matrix. Two-stage soil washing experiments were conducted using different combinations of chemical agent: 1) persulfate oxidation, followed by organic acid washing, and 2) Fenton oxidation, followed by inorganic acid washing. Persulfate oxidation-organic acid washing efficiently removed both organic and inorganic contaminants to meet the regulatory soil quality standard. The average removal rates of total petroleum hydrocarbons (TPH), Cu, Pb, and Zn were 88.9%, 82.2%, 77.5%, and 66.3% respectively, (S/L 1:10, reaction time 1 h, persulfate 0.5 M, persulfate:activator 3:1, citric acid 2 M). Fenton oxidation-inorganic acid washing also gave satisfactory performances to give 89%, 80.9%, 87.1%, and 67.7% removal of TPH, Cu, Pb, and Zn, respectively (S/L 1:10, reaction time 1 hr, hydrogen peroxide 0.3 M, hydrogen peroxide:activator 5:1, inorganic acid 1 M).

Effect of Chemical Amendments on Soil Biological Quality in Heavy Metal Contaminated Agricultural Field

  • Kim, Yoo Chul;Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Ji, Won Hyun;Yang, Jae E.;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.146-152
    • /
    • 2015
  • Heavy metal pollution has been a critical problem in agricultural field near at the abandoned metal mines and chemical amendments are applied for remediation purpose. However, biological activity can be changed depending on chemical amendments affecting crop productivity. Main purpose of this research was to evaluate biological parameters after applying chemical amendments in heavy metal polluted agricultural field. Result showed that soil respiration (SR) and microbial biomass carbon (MBC) were changed after chemical amendments were applied. Among three different amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge(AMDS), AMDS had an effect to increase SR in paddy soil. Comparing to control ($93.98-170.33mg\;kg^{-1}day^{-1}$), average of 30% increased SR was observed. In terms of MBC, SS had an increased effect in paddy soil. However, no significant difference of SR and MBC was observed in upland soil after chemical amendment application. Overall, SR can be used as an indicator of heavy metal remediation in paddy soil.

Review for Remediation Techniques of Contaminated Soil with Heavy Metals (중금속 오염토양의 복원기술에 대한 고찰)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.53-63
    • /
    • 2013
  • It is well known that problem for contaminated soil with heavy metals is mainly produced from agricultural land around abandoned metal mine and the cost to solve them is much higher than those of water and air pollution in addition, it takes much more time to clarify the contaminated soil. Until now, economical and practical many techniques to remediate contaminated soils with heavy metals have been developed and proposed. Therefore, in this study, characteristic, merit and weakness for various techniques which are developing and commercializing recently in domestic/foreign country will be reviewed.

Remediation of A DNAPL Contaminated Site Using Containment WALL (차단벽을 이용한 DNAPL 오염지역의 복구)

  • Lee, Kwang-Yeol;Joo, Wan-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.81-85
    • /
    • 1998
  • In the present study, the design method of containment walls is proposed by utilizing an existing site. The selected remedy for the Source Area of Operable Unit 2 at Hill Air Force Base stipulated containment of the pure-phase trichloroethylene contamination. The in-place-mixed wall construction was selected because of the irregular topography, small area of the site, and the requirement to reach depths of greater than 90 feet below ground surface. Bench-scale compatibility studies were performed for the containment wall mix design on three commercial bentonite clays. The samples were subject to screening tests and long-term tests for evaluation of changed soil properties when exposed to the contaminated groundwater.

  • PDF

Removal of heavy metal and organic matter by electrokinetic ultrasonic remediation technology

  • Chung, Ha-Ik;Oh, In-Kyu
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.210-214
    • /
    • 2002
  • In this study, the coupled effect of electrokinetic and ultrasonic remediation technology was investigated for removing of heavy metal and organic matter at the same time. The laboratory tests were conducted using specially designed and fabricated electrokinetic and ultrasonic devices. The electrokinetic technique was applied to remove mainly the heavy metal and the ultrasonic technique was applied to remove mainly organic substance in contaminated soil. Diesel fuel and Cd were used as a surrogate contaminant for this test. A series of laboratory experiments involving electrokinetic and electrokinetic+ultrasonic flushing test were carried out. An increase in permeability and contaminant removal rate was observed in electrokinetic+ultrasonic flushing test.

  • PDF

Scented Geraniums: a Model System for Phytoremediation

  • Raj, Sankaran-Krishna;Dixon, Michael-A;Praveen K. Saxena
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.325-337
    • /
    • 2000
  • All living organisms depend on soil and water for their sustained growth and development. In recent years, sustenance of life in these growth matrices has been adversely affected by the cumulative increase in environmental pollutants resulting from increasing population, growing economies and resource-use. This review provides a glimpse into the problem of global environmental pollution, the traditional technologies available for remediation and the scope of emerging‘plant-based remediation’technologies. Phytoremediation, the use of plants to effectively remove or stabilize contaminants from the growth substrate, is a low cost and ecologically friendly alternative to the common‘dig and dump’technologies. The field of phytoremediation has been driven by the intrinsic need for identification of ideal candidate plant species. To date, there are only a very few identified plants which satisfy all of the prerequisites for use in phytoremediation. The review focuses on one such plant species, the common horticultural plant scented geranium (Pelargonium sp.), with demonstrated potential to remediate metal / salt contaminated soils / aqueous systems. The characterization of tolerance and metal / salt accumulation potential of Pelargonium sp. and its efficacy in remediating complex contaminated sites are described. The unique ability of scented geraniums to tolerate excessive amounts of multi-metals, hydrocarbon and salt mixtures, and at the same time to accumulate significant amounts of metal and salt ions in the biomass, renders this plant species as one of the ideal candidates for remediation.

  • PDF