• Title/Summary/Keyword: Soil-moisture

Search Result 2,172, Processing Time 0.032 seconds

The Effects of Soil Surface Moisture Distribution in Perlite on Occurrence of Wild Plants (지표면의 수분분포가 야생초본류의 발생에 미치는 영향)

  • Bak, In-Young;Kim, Min-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.16-23
    • /
    • 2001
  • This study was conducted to analyse the relation between physical characteristics of soil surface and wild plants occurrence. Lots of natural occurrence on loamy soil and a little of natural occurrence on perlite. Those were used to observe the wild plants occurrence through the duration. Natural occurrence of wild plants were observed on uniform sand, perlite, loamy soil and 2cms loamy soil layer above the perlite. Uniform sand was compared with different height of drain ditch. The results of analysis were as followed. 1. Wild plants germinated on the uniform perlite layer, they did not grow larger. Because water in large pores of perlite surface drained rapidly and evaporated easily, therefore surface remained low moisture contents. 2. A lot of weed grew on 2cms loamy layer on perlite which stratified above the perlite layer. Because perlite had plenty of soil moisture and soil moisture moved easily from perlite to loamy soil layer. 3. Uniform loamy soil had similar occurrence on the uniform perlite. It was nearly same at surface moisture distribution but lower than layered loamy soil on perlite, and the vertical distributions at soil moisture was totally lower than 2cms loamy soil layer on perlite. 4. Wild plants were grew on uniform sand on different height of drain ditch. In this case, much more wild plants were grew on which had more higher drainage ditch. The number of wild plants occurred when it was affected by soil surface moisture, drain ditch and natural occurrence of wild plants. This could be controlled by layered soil at surface moisture. Therefore weed occurrence can control in planting ground, where soil layer would not be disturbed.

  • PDF

Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality (인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF

A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse (파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구)

  • ;;;;Shino Kazuo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

Soil Moisture Estimation Using CART Algorithm and Ancillary Data (CART기법과 보조자료를 이용한 토양수분 추정)

  • Kim, Gwang-Seob;Park, Han-Gyun
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.7
    • /
    • pp.597-608
    • /
    • 2010
  • In this study, a method for soil moisture estimation was proposed to obtain the nationwide soil moisture distribution map using on-site soil moisture observations, rainfall, surface temperature, NDVI, land cover, effective soil depth, and CART (Classification And Regression Tree) algorithm. The method was applied to the Yong-dam dam basin since the soil moisture data (4 sites) of the basin were reliable. Soil moisture observations of 3 sites (Bu-gui, San-jeon, Cheon-cheon2) were used for training the algorithm and 1 site (Gye-buk2) was used for the algorithm validation. The correlation coefficient between the observed and estimated data of soil moisture in the validation sites is about 0.737. Results show that even though there are limitations of the lack of reliable soil moisture observation for various land use, soil type, and topographic conditions, the soil moisture estimation method using ancillary data and CART algorithm can be a reasonable approach since the algorithm provided a fairly good estimation of soil moisture distribution for the study area.

RETRIEVAL OF SOIL MOISTURE AND SURFACE ROUGHNESS FROM POLARIMETRIC SAR IMAGES OF VEGETATED SURFACES

  • Oh, Yi-Sok;Yoon, Ji-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • This paper presents soil moisture retrieval from measured polarimetric backscattering coefficients of a vegetated surface. Based on the analysis of the quite complicate first-order radiative transfer scattering model for vegetated surfaces, a simplified scattering model is proposed for an inversion algorithm. Extraction of the surface-scatter component from the total scattering of a vegetation canopy is addressed using the simplified model, and also using the three-component decomposition technique. The backscattering coefficients are measured with a polarimetric L-band scatterometer during two months. At the same time, the biomasses, leaf moisture contents, and soil moisture contents are also measured. Then the measurement data are used to estimate the model parameters for vv-, hh-, and vh-polarizations. The scattering model for tall-grass-covered surfaces is inverted to retrieve the soil moisture content from the measurements using a genetic algorithm. The retrieved soil moisture contents agree quite well with the in-situ measured soil moisture data.

  • PDF

Effects of different soil moisture conditions on growth, yield and stress index of adzuki bean from paddy field cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.337-337
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Excessive soil moisture may cause nutrient deficiencies and oxygen deficiency. Excessive soil water during crop growth stages results in decrease of yields. In Korea, the largest agricultural lands are paddy fields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to success this policy, it is necessary to fully understand crop response to excessive soil moisture condition from paddy field soils. Adzuki bean is one of major legumes which provide protein in daily diet. Adzuki bean has been well know its weakness to excessive soil moisture condition, In order to obtain optimal yields of adzuki bean from paddy field cultivation, it is necessary to understand response of adzuki bean under different soil moisture conditions. This study investigated characteristics of growths, yields and response degree of water stress from adzuki bean. Three cultivars were selected for this study; Chungju, Hongeon, and Arari. All adzuki beans were cultivated in a paddy field which was divided into three sections with different soil moistures. The paddy field was located in Milyang, Gyeongsangnam during 2016. One section of the paddy field had the greatest average soil moisture content as 35.1% during adzuki bean cultivation (very poor). The second greatest soil moisture section had 32.6% (somewhat poor) and the smallest soil moisture section had 28.9% of soil moisture (somewhat well). During cultivation of three cultivar adzuki beans, soil moisture contents and groundwater levels were monitored. All the characteristics of growth and yield components were measured; height, thickness, 100 seed weights etc. Stress index values were calculated by Stress Day Index (SDI). All cultivars had the greatest yields from somewhat well section. Chungju had the greatest yields throughout all three sections compared to other cultivars. Chungju had 81% greater yield than Hongeon which had the smallest yield from somewhat well section. Arari set in middle from all sections. However there was no significant differences yields from very poor and somewhat poor sections. Leaf SPAD values tended to decrease and stable carbon isotope values increased as soil moisture increased. However, Chungju had no difference across different soil moistures in SPAD and stable carbon isotope values, while Hongeon had the greatest differences across sections. These trends followed by SDI values. Chungju had the smallest SDI values compared to other cultivars, which meant that Chungju was the strongest tolerance against excessive soil moisture than other cultivars. All three cultivars showed severe decrease of yields from very poor and somewhat poor sections. Arari and Hongeon showed great decrease from somewhat well section compared to yields from upland soil. These two cultivars may not be proper cultivating in paddy fields. In conclusion, adzuki bean is very sensitive to soil moisture condition and detailed soil managements are required to obtain optimal yields of adzuki bean from paddy field cultivation.

  • PDF

Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (I) Soil Moisture (원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가:(I) 토양수분)

  • Shin, Yongchul;Choi, Kyung-Sook;Jung, Younghun;Yang, Jae E.;Lim, Kyoung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.60-69
    • /
    • 2016
  • In this study, we estimated root zone soil moisture dynamics using remotely sensed (RS) data. A soil moisture data assimilation scheme was used to derive the soil and root parameters from MODerate resolution Imaging Spectroradiometer (MODIS) data. Based on the estimated soil/root parameters and weather forcings, soil moisture dynamics were simulated at spatio-temporal scales based on a hydrological model. For calibration/validation, the Little Washita (LW13) in Oklahoma and Chungmi-cheon/Seolma-cheon sites were selected. The derived water retention curves matched the observations at LW 13. Also, the simulated soil moisture dynamics at these sites was in agreement with the Time Domain Reflectrometry (TDR)-based measurements. To test the applicability of this approach at ungauged regions, the soil/root parameters at the pixel where the Seolma-cheon site is located were derived from the calibrated MODIS-based (Chungmi-cheon) soil moisture data. Then, the simulated soil moisture was validated using the measurements at the Seolma-cheon site. The results were slightly overestimated compared to the measurements, but these findings support the applicability of this proposed approach in ungauged regions with predictable uncertainties. These findings showed the potential of this approach in Korea. Thus, this proposed approach can be used to assess root zone soil moisture dynamics at spatio-temporal scales across Korea, which comprises mountainous regions with dense forest.

Assimilation of Satellite-Based Soil Moisture (SMAP) in KMA GloSea6: The Results of the First Preliminary Experiment (기상청 GloSea의 위성관측 기반 토양수분(SMAP) 동화: 예비 실험 분석)

  • Ji, Hee-Sook;Hwang, Seung-On;Lee, Johan;Hyun, Yu-Kyung;Ryu, Young;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • A new soil moisture initialization scheme is applied to the Korea Meteorological Administration (KMA) Global Seasonal forecasting system version 6 (GloSea6). It is designed to ingest the microwave soil moisture retrievals from Soil Moisture Active Passive (SMAP) radiometer using the Local Ensemble Transform Kalman Filter (LETKF). In this technical note, we describe the procedure of the newly-adopted initialization scheme, the change of soil moisture states by assimilation, and the forecast skill differences for the surface temperature and precipitation by GloSea6 simulation from two preliminary experiments. Based on a 4-year analysis experiment, the soil moisture from the land-surface model of current operational GloSea6 is found to be drier generally comparing to SMAP observation. LETKF data assimilation shows a tendency toward being wet globally, especially in arid area such as deserts and Tibetan Plateau. Also, it increases soil moisture analysis increments in most soil levels of wetness in land than current operation. The other experiment of GloSea6 forecast with application of the new initialization system for the heat wave case in 2020 summer shows that the memory of soil moisture anomalies obtained by the new initialization system is persistent throughout the entire forecast period of three months. However, averaged forecast improvements are not substantial and mixed over Eurasia during the period of forecast: forecast skill for the precipitation improved slightly but for the surface air temperature rather degraded. Our preliminary results suggest that additional elaborate developments in the soil moisture initialization are still required to improve overall forecast skills.

Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.571-581
    • /
    • 2015
  • Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.

The Response of soil surface heat budget to the precipitation (지표면 열수지의 강수응답성에 관한 연구)

  • 황수진;진병화
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.89-100
    • /
    • 1994
  • It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the UM and miso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with micrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 cm and 4 cm depth are oscillated with one day Period in drying process and the amplitude of variation of 1 cm depth is greater than that of 4 cm. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.

  • PDF