• Title/Summary/Keyword: Soil water dynamics

Search Result 90, Processing Time 0.024 seconds

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Modeling Sedimentation Process in Ipjang Reservoir using SWAT and EFDC (SWAT-EFDC 연계 모델링을 통한 입장저수지의 유사 해석)

  • Shin, Sat Byeol;Hwang, Soon-Ho;Her, Younggu;Song, Jung Hun;Kim, Hak Kwan;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.135-148
    • /
    • 2018
  • Reservoir sedimentation is a major environmental issue, and various sediment load controls and plans have been proposed to secure clean and safe water resources. The objectives of this study were to estimate soil loss in the upper basins and predict sediment deposition in Ipjang reservoir using hydrologic and hydraulic model. To do so, SWAT (Soil and Water Assessment Tool) and EFDC (Environmental Fluid Dynamics Code) was used to estimate soil loss in two upper basins and to predict spatial distribution and amount of sediment deposition in the Ipjang reservoir, respectively. The hydrologic modeling results showed that annual average soil loss from the upper basins was 500 ton. The hydraulic modeling results demonstrated that sediment particles transported to the reservoir were mostly trapped in the vicinity of the reservoir inlet and then moved toward the bank over time. If long-term water quality monitoring and sediment survey are performed, this study can be used as a tool for predicting the dredging amount, dredging location and proper dredging cycle in the reservoir. The study findings are expected to be used as a basis to establish management solutions for sediment reduction.

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation (지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향)

  • Park, Jin Myeon;Lim, Tae Jun;Lee, Seong Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

Dynamics of Air Pollutants during the Yellow Sand Phenomena (黃砂現象의 大氣汚染物質 動態에 關한 硏究)

  • 李敏熙;黃奎浩;金恩植;平井英二;丁子哲治;宮崎元一
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.183-191
    • /
    • 1990
  • To check the possible transportation of gaseous air pollutants with the particles of yellow sand in the movement of air masses during the Yellow Sand Phenomenon, the concentrations of such air pollutants as TSP, $SO_2, CO, NO_x, O_3 and N-CH_4$, and wind wpeed were measured during the Yellow Sand Phenomenon (April 8 $\sim 10, 1990) and they were compared with those during the normal times in Korea. Meanwhile dust color of the samples during the Yellow Sand Phenomenon was the color of sand, that during the normal times was dark-brown. The concentrations of dusts; water soluble components, and metallic components of soil-originated elements during the Yellow Sand Phenomenon were higher than those during the normal times. While the metallic components in the dusts during the Yellow Sand Phenomenon were from soil-originated elements, those during the normal times were of both soiloriginated and sea-originated elements. The change of hourly concentrations of air pollutants showed bi-modal distribution during the two periods. Generally, the concentration levels of air pollutants during the Yellow Sand Period were higher than those during the normal times. Although similarity was observed in the primary sources, differences were observed in the dynamics of the secondary sources due to chemical reactions of the air pollutants during the two periods.

  • PDF

Molecular Simulation of Influence of Surface Energy on Water Lubrication (표면 에너지가 물 윤활 현상에 미치는 영향에 대한 분자시뮬레이션 연구)

  • Hyun-Joon Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.273-277
    • /
    • 2023
  • This paper presents a molecular dynamics simulation-based numerical investigation of the influence of surface energy on water lubrication. Models composed of a crystalline substrate, half cylindrical tip, and cluster of water molecules are prepared for a tribological-characteristic evaluation. To determine the effect of surface energy on lubrication, the surface energy between the substrate and water molecules as well as that between the tip and water molecules are controlled by changing the interatomic potential parameters. Simulations are conducted to investigate the indentation and sliding processes. Three different normal forces are applied to the system by controlling the indentation depth to examine the influence of normal force on the lubrication of the system. The simulation results reveal that the solid surface's surface energy and normal force significantly affect the behavior of the water molecules and lubrication characteristics. The lubrication characteristics of the water molecules deteriorate with the increasing magnitude of the normal force. At a low surface energy, the water molecules are readily squeezed out of the interface under a load, thus increasing the frictional force. Contrarily, a moderate surface energy prevents expulsion of the water molecules due to squeezing, resulting in a low frictional force. At a high surface energy, although squeezing of the water molecules is restricted, similar to the case of moderate surface energy, dragging occurs at the soil surface-water molecule interface, and the frictional force increases.

Mineralization of Cattle Manure Compost at Various Soil Moisture Content (우분퇴비 시용후 토양수분 조절에 따른 질소 및 탄소의 전환)

  • Kim, P.J.;Chung, D.Y.;Chang, K.W.;Lee, B.L.
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.295-303
    • /
    • 1997
  • To investigate the transformation characteristics of nitrogen and carbon from cow manure compost amended in soil under different moisture conditions, dynamics of nitrogen and carbon were determined periodically for 15 weeks of aerobic incubation at room temperature during July${\sim}$November, 1996. Cow manure compost matured with mixing saw dust was amended with the 4 ratios (0, 2, 4, 6%(wt/wt)) in Ap horizon soil, which collected from green house in Yesan, Chungnam. Moisture was controlled with 0.2, 0.3, 0.4, and 0.5 of mass water conte nt (${\theta}$m) to air dried soil, and water loss was compensated at every sampling. During incubation, soil pH was decreased continuously, that was caused by hydrogen generated from nitrification of ammonium nitrogen. And pH became higher with inclining cow manure compost amendment and water treatment, that meaned the increase of mineralization of organic-N to $NH_4\;^+-N$. Total nitrogen was reduced with increasing water content, but total carbon showed the contrast tendency with that of nitrogen. Therefore, C/N ratio slightly decreased in the low water condition (${\theta}$m 0.2) during incubation, but increased continuously in high water condition over ${\theta}$m 0.4. As a result, it was assumed that soil fertility is able to be reduced in the high water content over available water content. Nitrate transformation rate increased lasting in the low water content less than ${\theta}$m 0.3. Itdropped significantly in the first $2{\sim}3$ weeks of incubation over ${\theta}$m 0.4. In particular, nitrate was not detected in ${\theta}$m 0.5 of water content after the first $2{\sim}3$ weeks. In contrast, ammonium transformation was inclined with increasing water treatment. Nitrogen mineralization rate, which calculated with percentage ratio of (the sum of ex.$NH_4\;^+-N$ and $NO_3\;^--N$)/total nitrogen, was continuously increased in the low water content of ${\theta}$m 0.2 and 0.3. But it saw the different patterns in high water content over ${\theta}$m 0.4 that was drastically declined in the initial stage and then gradually inclined . From the above results, nitrogen transformation patterns differentiated decisively in water content between ${\theta}$m 0.3 and 0.4 in soil. Thus, it is very important for the maintain of suitable soil water content to enhance fertility of soil amended with manure compost. However, excess treatment of manure compost might enhance the possibility of contamination of small watershed and ground water around agricultural area.

  • PDF

Land Surface Temperature Dynamics in Response to Changes in Land Cover in An-Najaf Province, Iraq

  • Ebtihal Taki, Al-Khakani;Watheq Fahem, Al-janabi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.99-110
    • /
    • 2023
  • Land surface temperature (LST) is a critical environmental indicator affected by land cover (LC) changes. Currently, the most convenient and fastest way to retrieve LST is to use remote sensing images due to their continuous monitoring of the Earth's surface. The work intended to investigate land cover change and temperature response inAn-Najaf province. Landsat multispectral imageries acquired inAugust 1989, 2004, and 2021 were employed to estimate land cover change and LST responses. The findings exhibited an increase in water bodies, built-up areas, plantations, and croplands by 7.78%, 7.27%, 6.98%, 3.24%, and 7.78%, respectively, while bare soil decreased by 25.27% for the period (1989-2021). This indicates a transition from barren lands to different land cover types. The contribution index (CI) was employed to depict how changes in land cover categories altered mean region surface temperatures. The highest LSTs recorded were in bare lands (42.2℃, 44.25℃, and 46.9℃), followed by built-up zones (41.6℃, 43.96℃, and 44.89℃), cropland (30.9℃, 32.96℃, and 34.76℃), plantations (35.4℃, 36.97℃, and 38.92℃), and water bodies (27.3℃, 29.35℃, and 29.68℃) respectively, in 1989, 2004, and 2021. Consequently, these changes resulted in significant variances in LST between different LC types.

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

Relationship between Vegetation Composition and Dissolved Nitrogen in Wetlands of Higashi-Hiroshima, West Japan

  • Miandoab, Azam Haidary;Nakane, Kaneyuki
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.209-223
    • /
    • 2007
  • Twenty-four wetlands located in Higashi-Hiroshima City in West Japan were selected for this study in order to investigate both the relationship between aquatic plant composition and environmental conditions; and the relationship between changing land use patterns in the catchments and the concentration of different forms of nitrogen in the wetlands. The dominant and subdominant species which comprised the principal vegetation were determined based on a vegetation census conducted in each wetland during the growing season from June to August, 2006. The seasonal variations of water quality factors (pH, electrical conductivity, turbidity, dissolved oxygen, total dissolved solid, and temperature) and different forms of nitrogen such as nitrite, nitrate, ammonium, total nitrogen, dissolved organic nitrogen and dissolved inorganic nitrogen concentrations were analyzed as important indicators of water quality for the surface water of the wetlands. The surveyed wetlands were classified into three types (non-disturbed wetlands, moderately-disturbed wetlands and highly-disturbed wetlands), based on the degree of human disturbance to their catchment areas. An analysis of variance indicated that there was a significant difference among the wetland groups in the annual mean values of electrical conductivity, total dissolved solids, total nitrogen, nitrite, dissolved inorganic nitrogen and dissolved organic nitrogen. Classification of the wetlands into three groups has revealed a pattern of changes in the composition of plant species in the wetlands and a pattern of changes in nitrogen concentrations. A majority of the non-disturbed wetlands were characterized by Brasenia schrebi and Trapa bispinosa as dominant; with Potamogeton fryeri and Iris pesudacorus as sub-dominant species. For most of the moderately-disturbed wetlands, Brasenia schrebi were shown to be a dominant species; Elocheriss kuriguwai and Phragmites australis were observed as sub-dominant species. For a majority of the highly-disturbed wetlands, Typha latifolia and T. angustifolia were observed as dominant species, and Nymphea tetragona as the sub-dominant species in the study area. An analysis of land use and water quality factors indicated that forest area played a considerable role in reducing the concentration of nutrients, and can act as a sink for surface/subsurface nutrient inputs flowing into wetland water, anchor the soil, and lower erosion rates into wetlands.

Infection Mechanism of Pathogenic Exduate by Soil-Borne Fungal Pathogens : A Review

  • Lim, You-Jin;Kim, Hye-Jin;Song, Jin-A;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.622-627
    • /
    • 2012
  • The processes to determine the composition, dynamics, and activity of infection mechanisms by the rhizosphere microflora have attracted the interest of scientists from multiple disciplines although considerable progress of the infection pathways and plant-pathogen interactions by soil borne fungal pathogens have been made. Soilborne pathogens are confined within a three-dimensional matrix of mineral soil particles, pores, organic matter in various stages of decomposition and a biological component. Among the physical and chemical properties of soils soil texture and matric water potential may be the two most important factors that determine spread exudates by soil borne fungal pathogens, based on the size of the soil pores. Pathogenic invasion of plant roots involves complex molecular mechanisms which occur in the diffuse interface between the root and the soil created by root exudates. The initial infection by soilborne pathogens can be caused by enzymes which breakdown cell wall layers to penetrate the plant cell wall for the fungus. However, the fate and mobility of the exudates are less well understood. Therefore, it needs to develop methods to control disease caused by enzymes produced by the soilborne pathogens by verifying many other possible pathways and mechanisms of infection processes occurring in soils.