• 제목/요약/키워드: Soil washing with water

검색결과 96건 처리시간 0.026초

무세제 세탁코스에 관한 연구 (A Study on Non-detergent Course of Washing Machine)

  • 강인숙;조성진;김영수
    • 한국의류산업학회지
    • /
    • 제5권5호
    • /
    • pp.539-544
    • /
    • 2003
  • The purpose of this study is to research source of soil which is available for non-detergent course, and to develop optimum non-detergent course of washing machine for water soluble soil. The water soluble soil such as grape juice, soy bean paste and soy sauce were easily removed from the fabric but the oil soluble soils such as sesame oil and steak sauce were insurfficiently removed in washing solution without detergent. In the absence of detergent, amount of residual soils increased linearly with increasing number of soiling and washing. To search optimum conditions of washing for non-detergent course, the effect of temperature, washing time and washing method on detergency of soil in non-detergent washing solution was examined. The optimum washing temperature and washing time for non-detergent course were about $40^{\circ}C$, and 7 minutes, respectively. And in the non-detergent washing solution, midterm drain-resupply of water during washing process was good for removal of water soluble soil.

The Removal of Petroleum Hydrocarbon from Fine Soil in Soil Washing Water using Advanced Oxidation Processes

  • Jang, Gwan-Soon
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.362-367
    • /
    • 2014
  • This study was performed to test the applicability of the ozone/hydroxy radical reaction system, which applied advanced oxidation processes, to remove total petroleum hydrocarbon (TPH) from the fine soil in washing water of the soil washing process. Removal efficiency was tested on 40 L of washing water in a pilot reaction tank. Fine soil contaminated with $800mg\;kg^{-1}$ TPH was prepared at 5% and 10% suspended solids. Testing conditions included ozone/hydroxy radical flow rates of 40, 80, and $120L\;min^{-1}$, and processing time of 2 to 12 hours. The removal efficiency of petroleum hydrocarbon from water waster by ozone/hydroxy radical was increased with higher flow rates and lower percentages of suspended solids. Optimal efficiency was achieved at $80L\;min^{-1}$ flow rate for 4 hours for the 5% suspended solids, and $120L\;min^{-1}$ for 6 hours for the 10% suspended solids. These results verified the efficiency of hydroxy radical in removing TPH and the applicability of the ozone/hydroxy radical reaction system in the field.

오염토양 세척공정에서 모델링을 통한 최적 계면활성제의 선별 (Optimal Surfactant Screening by Model Application for Soil Washing Process)

  • 우승한;박종문
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권3호
    • /
    • pp.61-73
    • /
    • 2003
  • 계면활성제를 이용한 오염 토양의 세척 공법 적용시 오염물질의 분배를 결정할 수 있는 모델을 개발하였다. 이 모델을 활용하여 세척효과를 극대화할 수 있는 계면활성제의 선정 방법, 물 첨가량 효과, 최적 세척 방법을 예시하였다. 오염물질은 naphthalene, phenanthrene, pyrene, 계면활성제는 Triton X-100, Tergitol NP-10, Igepal CA-720, Brij 30을 대상으로 하였다. 동일한 총량의 계면활성제를 사용할 때 물의 첨가량이 증가하더라도 세척효과의 큰 증가 효과가 없었다. 동일한 총량의 물 및 계면활성제를 사용할 경우 1회 세척보다 연속 세척이 더 효과적이었으며, 연속 세척에서 물과 계면활성제를 동일하게 분배하는 것이 최적이었다. 물과 계면활성제 사용량 및 연속세척 회수에 따라 최적 계면활성제의 종류가 달라질 수 있었다. 본 모델 활용기법은 오염토양 세척 공법 적용시 복잡한 실험을 수행하기 이전에 계면활성제의 탐색과 최적 공정 설계에 활용될 수 있을 것이다.

현장규모의 유류오염 토양세척 및 무방류 세척 유출수 처리 공정 (Full-scale Soil Washing and Non-discharged Washing Water Treatment Process of Soil Contaminated With Petroleum Hydrocarbon)

  • 서용식;최상일;김종민;김보경;김성규;박상헌;주원하
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제14권1호
    • /
    • pp.61-67
    • /
    • 2009
  • 현장규모의 유류오염 토양세척에 따른 세척 유출수를 처리하기 위해 다단계 물리화학적 무방류 수처리시스템을 이용하였다. 오염토양세척 후 세척토양과 세척수 처리효율을 평가하기 위해 단위공정별 잔류하는 TPH(세척토양), COD$_{Mn}$, SS, n-hexane을 분석하였다. 세척 유출수 시료채취지점은 침사지,응집 침전조 그리고 유수분리조의 유출수,공정수,저장조 유입수로 4곳의 시료채취 지점에서 총 3회에 걸쳐서 실시하였다. 또한 약8개월간의 토양세척 및 공정수 저장조의COD$_{Mn}$, SS, 그리고 n-hexane을 분석하였다. 그결과, 오염토양의 농도조건과 상관없이 오염토양의 세척효율이 평균95.9%로 높았고, 수처리 공정 최종 방류구인 공정수 저장수의 COD$_{Mn}$, SS, 그리고 n-hexane가 수질환경보전법상 청정지역 방류수질기준 미민으로 검출되었다. 현장규모의 토양 세척수 처리시스템은 세척수를 100%세척공정수로 재이용하여 환경친화적이고 경제적인 토양세척 처리공법이 될 수 있음을 시사하고 있다.

마이크로이멀젼을 이용한 유기오염물로 오염된 지반의 정화 (Remediation of Contaminated Soil with Organic Contaminants using Microemulsion)

  • Park, Ki-Hong;Kwon, Oh-Jung;Park, Jun-Boum
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.597-604
    • /
    • 2003
  • In the soil washing process, the contaminants are usually removed by abrasion from soil particles using mechanical energy and water However, organic contaminants with low water solubility like polycyclic aromatic hydrocarbons (PAH) are remained on soil particles. Previous studies have shown that surfactant possessing amphipathic activity enhances the solubility of organic materials. For this reason solutions with surfactants have been used to improve removal of organic contaminants on soil washing process. But, in this manner, many problems were found like complete loss of surfactants and additional contamination by surfactant. The remediation method using microemulsion has been introduced to overcome these disadvantages. In this case, surfactants are recycled by phase separation of microemulsion after remediation. In microemulsion process, the surfactant will be recycled by phase separation of the microemulsion into a surfactant-rich aqueous phase and an oil phase after extraction. That is why remediation concept applying microemulsion as washing media has been Introduced. Suitable microemulsion have to be used in order to have the chance of refilling the soil after decontamination and to avoid any risk due to toxicity. The purpose of this research is to evaluate effect of microemulsion to remediation of contaminated soil. We performed test with various organic contaminants like Pyrene and BTEX, also compared efficiency of remediation in microemulsion process with soil washing

  • PDF

(구)장항제련소 주변 부지 매입구역 비소 오염토양에 대한 중성 인산염 토양세척법의 적용가능성 평가 (Applicability of Soil Washing with Neutral Phosphate for Remediation of Arsenic-contaminated Soil at the Former Janghang Smelter Site)

  • 임진우;김영진;양경;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권4호
    • /
    • pp.45-51
    • /
    • 2014
  • In accordance with the view on remediated soil as a resource, this study assessed the applicability of soil washing with the neutral phosphate for remediation of arsenic (As)-contaminated soil. Three soil samples of different land uses (i.e., rice paddy, upland field and forest land) were collected from the study site, and the aqua regia-extractable As concentrations were 59.2, 30.8 and 53.1 mg/kg, respectively. Among the neutral phosphate reagents, ammonium phosphate showed the highest As washing efficiency. The optimized washing condition was 2-hr washing with 0.5M ammonium phosphate solution (pH 6) and soil to liquid ratio of 1 : 5. The extraction efficiencies of As did not guarantee the residual soil As concentrations to satisfy the Korea soil regulatory level (i.e., Worrisome level) in the three soil samples. To enhance washing efficiency, the As-contaminated soil was submerged in washing solution (1 : 1, w/v) for 24 hr and 1-hr washing with 0.5M ammonium phosphate solution was tested. As extraction efficiencies of 36.1 (rice paddy), 21.4 (upland field) and 26.4% (forest land) were attained, which satisfied the Worrisome level for Region 1 (25 mg/kg of As) in rice paddy, but not in upland field and forest land.

응집제를 적용한 토양세척 공정에서의 세슘 제염 성능 평가 연구 (A Study on the Decontamination Performance of Cesium by Soil Washing Process With Flocculating Agent)

  • 송종순;김선일
    • 방사성폐기물학회지
    • /
    • 제16권1호
    • /
    • pp.41-47
    • /
    • 2018
  • 원전사고 및 시설보수 과정에서 방출되는 방사성물질 중 $^{137}Cs$은 토양의 주 오염원 중 하나이다. 세슘으로 인한 토양오염은 주민의 거주 및 공업용지로의 재사용을 위해 제염이 불가피하다. 본 연구에서는 다양한 토양복원 기술 중 국내 외에서 실제 방사성물질로 오염된 토양에 적용한 사례가 있는 토양세척 기술을 선정하였다. 토양세척 공정은 세척제를 사용하여 토양과 세슘의 표면장력을 약화시켜 토양과 세슘을 분리하는 원리이다. 이러한 토양세척 공정의 세척수 재사용을 통해 공정효율을 높이고자 세척수에 응집제를 적용하여 미세토양 및 세슘의 제거 성능 실험을 수행하였다. ICP-OES를 통해 세슘 수용액에 토양을 첨가하여 세슘을 흡착시킨 후 응집제를 첨가하여 세슘의 농도를 측정하였으며 응집제 적용시 최대 세슘 제거율은 약 88%, 최소는 67%였다. Visual MINTEQ Code를 통한 세슘과 토양과의 종결합을 예측하였으며 탁도 측정을 통해 응집제 투여 후 탁도를 측정하여 세척수의 재사용 여부 및 미세토양 제거율을 분석하였다.

토양 세척을 통한 살충제 (파라티온, 다이아지논)로 오염된 토양의 정화 (Remediation of Insecticides (Parathion, Diazinon) Contaminated Soil by Washing Process)

  • 현재혁;백정선;조미영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.3-6
    • /
    • 1999
  • Several chemical washing procedures were applied to Parathion and Diazinon contaminated soil. Batch and column tests were performed to determine the insecticides extraction efficiency as a function of pH. Washing efficiency of methanol is more higher than that of water and HCl when washed parathion and diazinon are. Those are completely miscible with most organic solvents. For parathion, release trend is increased as pH is increased because it is hydrolyzed easily at the condition of alkali. But diazinon shows reverse because diazinon is decomposed rapidly at the condition of acidic So, diazinon is more released than parathion is because this experiment is peformed in acidic and weak acidic conditions. Generally, parathion and diazinon are classified as having low mobility, so they can be easily controlled if the proper washing process are applied.

  • PDF

Color Change in and Soil Removal from Cocoa Soiled Cloth in Hard Water

  • Kim, Hyo-Jeong;Seok, Hye-Joon;Chung, Hae-Won
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2009년도 학술발표대회
    • /
    • pp.81-82
    • /
    • 2009
  • IEC 60456 declared the cocoa soiled cloth to be one of the standard soiled test cloths for measuring the performance of the clothes washing machines. Researchers for textile washing have known that cocoa soiled cloth has shown unpredictable washing performance. The color of cocoa mainly comes from flavonoids, and flavonoids reversibly change color with alkalinity from pH 1 to pH 7 as food colorants. The color change of flavonoids under various washing conditions, in the alkali solution, has not yet been confirmed. In this study, we have investigated the color change and the soil removal of the cocoa soiled cloth which were washed with alkaline washing liquids of various hardnesses. The cocoa soiled cloth which was washed in the water which was 60ppm or higher became darker than the soiled cloth. When the cloth was washed in the detergent solution, the cloth was slightly darker only when the washing condition was $20^{\circ}$ and 250ppm. As the water hardness increased, the soil removal decreased and the higher washing temperature was more effective.

  • PDF

장항제련소 주변 비소오염토양의 특성분석에 따른 토양세척 처리효율 평가 (Assessment of Soil Washing Efficiency for Arsenic Contaminated Site Adjacent to Jang Hang Refinery)

  • 문소영;오민아;정준교;최상일;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권1호
    • /
    • pp.71-81
    • /
    • 2011
  • Cause of contamination in the study area nearby Jang Hang Refinery is dust scattering in refinery stack, and soil washing treatment is one of the proper technologies for soil remediation in this area. Site conditions frequently limit the selection of a treatment process. A treatment technology may be eliminated based on the soil classification or physicochemical characteristics of soil. This study was assessed the soil washing efficiency by conducting of soil characteristic analysis in the vicinity of Jang Hang Refinery Stack within a 2 km radius. Also, it was decided about remedial range with comparative analysis of As in soil by Korean Standard Test Method before/after revision, whereupon As concentration in soil showed a increasing tendency after revision. As a result, the soil washing using the size separation of soil was determined through identifying of As species in the soil. In this site, only particle size distribution and water content of soil can provide the initial means of screening for the potential use of soil washing.