• Title/Summary/Keyword: Soil thermal conductivity

Search Result 98, Processing Time 0.03 seconds

Effects of Soil and Air Flow Characteristics on the Soil-Air Heat Exchanger Performances (토양과 공기유동특성이 토양-공기 열교환기 성능에 미치는 영향)

  • 김영복;김기영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • A theoretical model was developed to evaluate the effects of soil and airflow characteristics on the soil-air heat exchanger performances. The model, which includes three-dimensional transient energy and mass equilibrium-equation, was solved by using a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation. Energy gains, heat exchange efficiencies, and outlet air temperature are presented including the effects of soil moisture content, soil conductivity, soil thermal diffusivity, and soil initial temperature. Also, data related to the effects of airflow rate and inlet air temperature on the thermal performance of the system are presented. The results indicated that energy gains depend on soil conductivity, soil thermal diffusivity, and soil initial temperature. Heat exchange efficiencies relied on air mass flow rate and soil moisture content.

  • PDF

Engineering Characteristics of Antarctic and Siberian Frozen Soils (남극 및 시베리아 흙의 동토공학적 특성 분석)

  • Kim, Young-Chin;Shin, Jae-Won;Kim, Hyun-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.894-904
    • /
    • 2008
  • In this study, soil samples from the Antarctic and Vladivostok, Siberia were tested in the laboratory, and specific gravity, compaction curve and grain size distribution were determined. The effect of temperature change on the thermal conductivity, unfrozen water content and compressive strength were investigated. Samples for the compressive strength test were prepared in a mold with a fixed volume to prevent swelling and the effect of temperature and water content change on the strength were compared. Results from the thermal conductivity test showed that thermal conductivity values for both soils were larger at temperatures below freezing than above freezing. The unfrozen water content dropped sharply within a temperature range of $0{\sim}-5^{\circ}C$ and then gradually decreased further up to $-20^{\circ}C$. Compressive strength test results showed various stress/deformation curves with a change in water content. Sandy soil had much larger strength than pure ice at an identical temperature, while clayey soil had a smaller strength than ice near the freezing point, but showed a larger strength at temperatures belows $-15^{\circ}C$.

  • PDF

Experimental investigation on the variation of thermal conductivity of soils with effective stress, porosity, and water saturation

  • Lee, So-Jung;Kim, Kyoung-Yul;Choi, Jung-Chan;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.771-785
    • /
    • 2016
  • The thermal conductivity of soils is an important property in energy-related geotechnical structures, such as underground heat pumps and underground electric power cable tunnels. This study explores the effects of geotechnical engineering properties on the thermal conductivity of soils. The thermal conductivities of quartz sands and Korean weathered silty sands were documented via a series of laboratory experiments, and its variations with effective stress, porosity, and water saturation were examined. While thermal conductivity was found to increase with an increase in the effective stress and water saturation and with a decrease in porosity, replacing air by water in pores the most predominantly enhanced the thermal conductivity by almost one order of magnitude. In addition, we have suggested an improved model for thermal conductivity prediction, based on water saturation, dry thermal conductivity, saturated thermal conductivity, and a fitting parameter that represents the curvature of the thermal conductivity-water saturation relation.

Experiments on Thermal Conductivity of Concrete (콘크리트의 열전도율에 관한 실험적 연구)

  • 김진근;전상은;양은익;김국한;조명석;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.946-951
    • /
    • 1998
  • In order to calculate the thermal stresses of massive concrete structures in non-steady state conditions the thermal properties of the materials have to be well known. Structural materials such as concrete, rock and soil are heterogeneous, damp and porous so that measurements of their thermal properties by conventional methods would result in large errors. In this study, thermal conductivity was measured by the device, QTM-D3 which is usually used in Japan. Variables are chosen as age, water content, temperature, aggregate content, S/A ratio and type of cementitious materials. Finally a model for thermal conductivity was proposed.

  • PDF

Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model (평균 모세관압과 네트워크 모델을 이용한 불포화토의 유효 열전도도 산정에 관한 연구)

  • Han, Eunseon;Lee, Chulho;Choi, Hyun-Jun;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.93-107
    • /
    • 2013
  • Thermal conduction of the particulate composites or granular materials can be widely used in porous materials and geotechnical engineering. And it has continued to develop "effective thermal conductivity" of medium by modeling energy relationship among particles in medium. This study focuses on the development of the effective thermal conductivity at the unsaturated conditions of soils using the modified network model approach assisted by synthetic 3D random packed systems (DEM method, Discrete Element Method) at the particle scale. To verify the network model, three kinds of glass beads and the Jumunjin sand are used to obtain experimental values at various unsaturated conditions. The PPE (Pressure Plate Extractor) test is then performed to obtain SWCC (Soil-Water Characteristic Curve) of soil samples. In the modified network model, SWCC is used to adjust the equivalent radius of thermal cylinder at contact area between particles. And cutoff range parameter to define the effective zone is also adjusted according to the SWCC at given conditions. From a series of laboratory tests and the proposed network model, the modified network model which adopts a SWCC shows a good agreement in modeling thermal conductivity of granular soils at given conditions. And an empirical correlation between the fraction of the mean radius (${\chi}$) and thermal conductivity at given saturated condition is provided, which can be used to expect thermal conductivity of the granular soils, to estimate thermal conductivity of granular soils.

Model to Predict Non-Homogeneous Soil Temperature Variation Influenced by Solar Irradiation (일사영향권내 비균질 토양의 열적거동 예측 모델)

  • Kim, Yong-Hwan;Hyun, Myung-Taek;Kang, Eun-Chul;Park, Yong-Jung;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • This study is to develop a model to predict the soil temperature variation in Korea Institute of Energy Research using its thermal properties, such as thermal conductivity and diffusivity. Soil depth temperature variation is very important in the design of a proper Ground Source Heat Pump (GSHP) system. This is because the size of the borehole depends on the soil temperature distribution, and this can decrease GSHP system cost. If the thermal diffusivity and thermal conductivity are known, the soil temperature can be predicted by either the Krarti equation or the Spitler equation. Then a comparison with the Krarti equation and Spitler equation data with the real measured data can be performed. Also, the thermal properties can be reasonably approximated by performing a fit of the Krarti and Spitler equations with measured temperature data. This was done and, as a result, the Krarti equation and Spitler equation predicted values very close to the measured data. Although there is about a $0.5^{\circ}C$ difference between the deep subsurface prediction (16m - 60m), with this equation, were expected to have model this Non-Homogeneous Soil Temperature phenomenon properly. So, it has been shown that a prediction of non-homogeneous soil temperature variation influenced by solar radiation can be achieved with a model.

An Experimental Analysis of Effective Thermal Conductivity of Porous Materials Using Structural Models (구조모델을 이용한 다공성 매질의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • The effective thermal conductivity of porous materials is usually determined by porosity, water content, and the conductivity of the matrix. In addition, it is also affected by the internal structure of the materials such as the size, arrangement, and connectivity of the matrix-forming grains. Based on the structural models for multi-phase materials, thermal conductivities of soils and sands measured with varying the water content were analyzed. Thermal conductivities of dry samples were likely to fall in the region between the Maxwell-Eucken model with air as the continuous phase and the matrix as the dispersed phase ($ME_{air}$) and the co-continuous (CC) model. However, water-saturated samples moved down to the region between the $ME_{wat}$ model and the series model. The predictive inconsistency of the structural models for dry and water-saturated samples may be caused by the increase of porosity for water-saturated samples, which leads to decrease of connectivity among the grains of matrix. In cases of variably saturated samples with a uniform grain size, the thermal conductivity showed progressive changes of the structural models from the $ME_{air}$ model to the $ME_{wat}$ model depending on the water content. Especially, an abrupt increase found in 0-20% of the water content, showing transition from the $ME_{air}$ model to the CC model, can be attributed to change of water from the dispersed to continuous phase. On the contrary, the undisturbed soil samples with various sizes of grains showed a gradual increase of conductivity during the transition from the $ME_{air}$ model to the CC model.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Power Supply Regulation (부하변동에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Ro, Jeong-Geun;Yon, Kwang-Seok;Song, Heon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. This is done by supplying a constant heat power into a borehole heat exchanger. There are two methods to supply a constant heat power. One is to employ the electricity provided by Korea Electric Power Corporation(KEPCO). The other is to use electricity generated by a generator. In this study, the power supply regulation was found to reduce when the electricity generated by the generator was used. This is because the generator evaluated with the power supply characteristically reduces the power supply regulation between an overload and a complex using. But it sometimes occurs a power supply regulation in In-situ thermal response test. In this case getting of k,$R_b$ requires delay times and restored normal state. However, the effect of the delay times and restored normal state on the soil thermal conductivity and borehole thermal resistance is very small. Therefore it is possible to use a generally accepted delay times and restored normal state in the analysis. In this work, it is also shown that an acceptable range of ${\Delta}k$, ${\Delta}R_b$ for normal state and regulation state might be approximately 0.01-0.16W/m k, and -0.004-0.007m K/W, respectively. Thus, restored normal state of power supply regulation is valuable to recommend.

A Study on the Thernal Conductivity Characteristics of Discarded Tire Powder-Soil Mixture (폐타이어 파우더 혼합토의 열전도율 특성에 관한 연구)

  • Kim, Hak-Sam;Seo, Sang-Youl;NakamuRa, Dai;Yamashita, Satoshi;Suzuki, Teruyuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.27-36
    • /
    • 2010
  • Thermal conductivities using the thermal probe method were determined for frost susceptible soil with three types of discarded tire powder under the condition of a temperature variation from $-20^{\circ}C{\sim}+10^{\circ}C$. Also, the amount of unfrozen water contents was measured by the pulsed NMR method. The variation of unfrozen water content in the experimental condition could be expressed as a function of temperature given by an exponential equation. A new model for calculating the thermal conductivity of frozen soil was proposed. It is extended from the two element method and subdivided into three constituent elements.

A Study of the Effect of Borehole Thermal Resistance on the Borehole Length (보어홀 전열저항이 보어홀 길이에 미치는 영향에 관한 연구)

  • Lee, Se-Kyoun;Woo, Joung-Son
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.20-27
    • /
    • 2009
  • The effect of borehole thermal resistance on the borehole length is studied. In performing this work a new concept BLRR(borehole length reduction rate) is developed based on the line source model. The solution of line source model is shown to be valid through the comparison with the data of thermal response test. It is shown that BLRR is a function of soil thermal conductivity(k) and borehole thermal resistance($R_b$). The value of BLRR increases with increasing k, which means reducing $R_b$ is more effective when k is high. The reduction of borehole length with change of $R_b$ is easily estimated with BLRR. The validity of BLRR is also examined with EED analysis.