• 제목/요약/키워드: Soil system

검색결과 4,659건 처리시간 0.028초

Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.104-114
    • /
    • 2021
  • Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.

화학사고시 토양오염 사전관리제도 도입을 위한 국내외 제도 분석 및 시사점 (A Study on the Introduction of Pre-management System to Prevent Soil Contamination by Chemical Accident)

  • 유근제;양지훈;황상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권4호
    • /
    • pp.20-29
    • /
    • 2016
  • Although a number of chemical accidents have been occurred in South Korea, the effective prevention act for soil contamination has not been established so far. To effectively protect soil contamination from chemical accidents, decision support laws and regulations are absolutely essential. Regarding this situation, this study was aimed at diagnosing problems in current chemical safety management and prevention and response system against chemical accidents through analyzing the domestic and foreign causes of chemical accidents and the accident response procedures and finally suggesting policy measures for solving those problems. In order to clarify management of soil contamination by chemical accident, this study suggests the establishment of chemical accident preparedness, response, and making of local chemical management law and policy. This law needs to be supported by a clear management framework to guide government officials and all other stakeholders in the management of soil contamination by chemical accident.

Effects of soil-structure interaction and variability of soil properties on seismic performance of reinforced concrete structures

  • Mekki, Mohammed;Hemsas, Miloud;Zoutat, Meriem;Elachachi, Sidi M.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.219-230
    • /
    • 2022
  • Knowing that the variability of soil properties is an important source of uncertainty in geotechnical analyses, we will study in this paper the effect of this variability on the seismic response of a structure within the framework of Soil Structure Interaction (SSI). We use the proposed and developed model (N2-ISS, Mekki et al., 2014). This approach is based on an extension of the N2 method by determining the capacity curve of the fixed base system oscillating mainly in the first mode, then modified to obtain the capacity curve of the system on a flexible basis using the concept of the equivalent nonlinear oscillator. The properties of the soil that we are interested in this paper will be the shear wave velocity and the soil damping. These parameters will be modeled at first, as independent random fields, then, the two parameters will be correlated. The results obtained showed the importance of the use of random field in the study of SSI systems. The variability of soil damping and shear wave velocity introduces significant uncertainty not only in the evaluation of the damping of the soil-structure system but also in the estimation of the displacement of the structure and the base-shear force.

Soil-Cement 도로포장 기층의 피로특성 연구 (Fatigue Characteristics of Soil-Cement Based Pavement)

  • 오병환;이형준;이명규;양인환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 가을 학술발표회 논문집
    • /
    • pp.273-277
    • /
    • 1993
  • Fitigue behavior of soil-cement based pavement due to repeatitive traffic loads is studied. Finite element method is employed to analyze the pavement system including base, subbase, and soil layers. The calculated stresses are then used to evaluate the fatigue life of a pavement system. For the study is needed to determine accurately the fatigue characteristic of various soil-cement systems.

  • PDF

강우재현 모형실험과 SWCC Cell 실험에 의한 화강암질 풍화토의 함수특성곡선 (Soil Water Characteristic Curve of the Weathered Granite Soil through Simulated Rainfall System and SWCC Cell Test)

  • 기완서;김선학
    • 지질공학
    • /
    • 제18권4호
    • /
    • pp.523-535
    • /
    • 2008
  • 강우재현장치를 제작하고, 강우 및 사면조건에 따라 강우재현 모형실험과 함수특성곡선실험(SWCC Cell Test)을 실시하여 불포화 특성에 관해 연구하였다. 그 결과를 이용하여 강우에 따른 침투거동 특성과 함수특성곡선 모델들의 불포화된 화강암질 풍화토에 대한 적용을 검토하였다. 강우재현 모형실험의 습윤과정(강우재현)과 건조과정(방치)에서 계측된 체적함수비와 모관흡인력을 비교한 결과 체적함수비는 $2{\sim}5%$, 모관흡인력은 $3{\sim}10\;kPa$ 정도 값의 차이를 보여 이력현상을 확인 할 수 있었다. 또한, 모관흡인력의 값이 체적함수비의 값에 비해 상대적으로 큰 차이를 보여 모관흡인력에 이력거동이 더 큼을 확인할 수 있었다. 강우재현 모형실험과 함수특성곡선실험에서 얻은 결과로부터 구한 함수특성곡선을 비교하면, 습윤과정과 건조과정에서 두 방법 모두 근접한 함수특성곡선을 얻을 수 있었으나, 두 방법 모두 습윤과정과 건조과정에서의 결과는 차이가 있었다. 이로써 불포화토의 특성을 고려한 보다 합리적인 설계나 안정검토에 함수특성곡선을 적용시킬 때에는 습윤과정에서는 습윤과정 함수특성곡선을 건조과정에서는 건조과정 함수특성곡선을 적용하는 것이 합당할 것으로 여겨진다.

Effect of Cattle-Manure Application on Soil Chemical Properties and Crop Yields in Rice-Forage Cropping System

  • Lee, Yejin;Yun, Hong-Bae;Sung, Jwa-Kyung;Ha, Sang-Keun;Song, Yo-Sung;Sonn, Yeon-Kyu;Lee, Deog-Bae
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.553-557
    • /
    • 2014
  • The steady increase in livestock industry has greatly required the stable production of food and forage crops. As an alternative, rice-forage cropping system has been attempted in several southern areas. The present study was performed to understand whether an application of cattle-manure compost affects soil chemical properties and crop productivity in rice-forage cropping system, rice ${\rightarrow}$ summer oat ${\rightarrow}$ rye, in Jangheong county, south Jeolla province from 2013 to 2014. Treatments was composed of control (no compost), CM1 (compost application before rice transplanting), and CM2 (two-times compost application, before rice transplanting and after rice harvest), and inorganic fertilizers (N, P, and K) were equally dressed in all plots. Yields of rice were not significantly different between treatments, however, oat production was 1.25-fold higher in CM1 and CM2. Nutrient uptake amounts of rye were higher in CM2 than CM1 and control. Total nitrogen in soil was maintained stable level during crop cultivation. And soil organic matter contents in all treatments were increased by crop residue. Available P_2O_5$ and exchangeable K were increased by cattle manure application. Therefore, it suggested that the amount of nutrient by forage crop residue should be considered in rice-forage multiple cultivation.

대면적 절판지붕용 녹화시스템의 토성기반 수문학적 최적모델 도출을 위한 전산 모의연구 (Computer simulation study to generate an optimal hydrologic model based on the soil properties of the large area plate roof greenery system)

  • 김태한;이지원
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.73-79
    • /
    • 2016
  • This study aimed to investigate the flood prevention effect expected from the afforestation of a large area metal roof of an industrial complex located in an area prone to floods in the rainwater outflow reduction aspect through computer simulation based on soil, which is a key element of the system. In order to conduct a more realistic simulation, the properties of the surveyed soil were generated through substantive analysis, soil texture analysis, and saxton method. A comparative performance evaluation was conducted by using soil depth and ponding depth, which are key elements of the system, as variables. The study result showed that during the heavy rainfall period, the bottom ash artificial soil had 61% rainwater outflow reduction effect, which was 11% higher than the SWMM standard sand.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

효율적인 오염토양부지 정보관리체계 구축방안: 2. 미래지향적 체계구조 (Developing an Efficient Information Management System of Soil Contaminated Sites in Korea: 2. Future-Oriented Framework)

  • 황상일;김훈미;이양희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권6호
    • /
    • pp.1-7
    • /
    • 2007
  • 2편의 연계논문중 첫 번째 논문(황상일외, 2006)에서는 국내.외 정보관리체계 현황을 분석하고 국내 문제점을 파악한 후 정보관리체계 구축을 위한 정책적 시사점을 도출하였다. 두 번째 연구인 본 논문은 국내 적용 가능한 정보체계 구축(안)을 설정하고 이를 뒷받침하기 위한 정책적 제안을 제시하였다. 본 연구에서는 토양오염정보관리시스템의 필수구성요소로 정보수집입력체계, DB시스템, 정보공개체계 등으로 정하였다. 미래지향적으로 시스템을 구축하기 위해선 1) 토양환경보전법에 정보관리 및 정보공개에 대한 선언적 조항 추가, 2) 정화관련자료의 세분화 및 자료 작성에 대한 세부 규정 정립, 3) 정보관리주체의 일원화 등을 제안하였다.

Numerical simulation of soil-structure interaction in framed and shear-wall structures

  • Dalili, M.;Alkarni, A.;Noorzaei, J.;Paknahad, M.;Jaafar, M.S.;Huat, B.B.K.
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.17-34
    • /
    • 2011
  • This paper deals with the modeling of the plane frame structure-foundation-soil system. The superstructure along with the foundation beam is idealized as beam bending elements. The soil medium near the foundation beam with stress concentrated is idealized by isoparametric finite elements, and infinite elements are used to represent the far field of the soil media. This paper presents the modeling of shear wall structure-foundation and soil system using the optimal membrane triangular, super and conventional finite elements. Particularly, an alternative formulation is presented for the optimal triangular elements aimed at reducing the programming effort and computational cost. The proposed model is applied to a plane frame-combined footing-soil system. It is shown that the total settlement obtained from the non-linear interactive analysis is about 1.3 to 1.4 times that of the non-interactive analysis. Furthermore, the proposed model was found to be efficient in simulating the shear wall-foundation-soil system, being able to yield results that are similar to those obtained by the conventional finite element method.