• Title/Summary/Keyword: Soil surface

Search Result 3,657, Processing Time 0.025 seconds

The influence of heavy metal on microbial biodegradation of organic contaminants in soil (토양내의 중금속이 유기오염물질 생분해에 미치는 영향 연구)

  • 최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.196-201
    • /
    • 2000
  • The influence of adsorption on cadmium toxicity to soil microorganisms in smectite-rich soils and sediments was quantified as a function of solution and sorbent characteristics. Adsorption and surface complexation experiments were conducted to infer Cd sorption mechanisms to a reference smectite and three fractions of a Veritsol soil, and to elucidate the effects of the surface complexation on Cd bioavailability and toxicity in soils and sediments. Cadmium adsorption isotherms conformed to the Langmuir adsorption model, with adsorptive capacities of the different samples dependent on their characteristics. Equilibrium geochemical modeling (MINTEQA2) was used to predict the speciation of Cd in the soil suspensions using Langmuir and Triple Layer surface complexation models. The influence of adsorption and surface complexation on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. Adsorption decreased the toxicity of Cd to soil microorganisms. Inner-sphere complexation is more effective than outer-sphere complexation in reducing the bioavailability and toxicity of heavy metals in soils and sediments.

  • PDF

Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images (MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성)

  • Kim, Sangwoo;Shin, Yongchul;Lee, Taehwa;Lee, Sang-Ho;Choi, Kyung-Sook;Park, Younshik;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

Analysis of the Factors Influencing the Mesopore Ratio on the Soil Surface to Investigate the Site Factors in a Forest Stand (III) - With a Special Reference to Mixed Stands - (산림(山林)의 입지환경인자(立地環境因子)가 표층토양(表層土壤)의 조공극률(組孔隙率)에 미치는 영향인자(影響因子) 분석(分析) (III) - 혼효임(混淆林)을 중심(中心)으로 -)

  • Park, Jae Hyeon;Jeong, Yongho;Kim, Kyong Ha;Youn, Ho Joong
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.683-691
    • /
    • 2001
  • This study aimed to clarify the influencing factors of the mesopore ratio on a pore geometry of surface soil in mixed stands as an index of the water retention capacity. Twenty four factors including site conditions and soil properties were analyzed by spss/pc+ for the data collected from during March to October of 1995. The factors influencing the mesopore ratio(pF2.7) on the surface soil were as follows; mesopore ratio(pF2.7) on the B horizon soil, under vegetation coverage, organic matter contents of surface soil and F layer depth. And influencing factor on the ratio of mesopore in the soil surface was correlated with surface soil hardness and depth of 10cm soil hardness shows high negative significance. Also, multiple regression equations for mesopore ratio of the mesopore ratio of B horizon soil and organic matter contents shows high significance($R^2$; 0.84).

  • PDF

Physico-chemical properties between organic and conventional kiwifruit orchards in Korea

  • Cho, Y.;Kim, B.;Cho, H.;Jeong, B.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.242-246
    • /
    • 2011
  • Organic kiwifruit orchard soils were compared with conventional ones in Korea. Soil structure of organic soil had higher gaseous and liquous phase as well as soil porosity in the surface soil. Although the nutritional level of each orchards were quite different among soils, the analysis of both system revealed that organic kiwifruit orchard soil had similar or even higher nutrient level (N and organic matter content in surface soil) compared to conventional ones. The organic matter content of deep soil also had the high tendency in deep soil of organic soil. Higher level of nitrogen in organic surface soil is presumably due to the excessive application of organic compost and liquid fertilizer rather than the contribution by grasses such as green manure. Available phosphorous level of organic system was quite high but similar in surface soil of both system, compared to the recommended level. Potassium, calcium and magnesium levels were also enough in organic kiwifruit orchard soils.

Characteristics on Land-Surface and Soil Models Coupled in Mesoscale Meteorological Models (중규모 기상모델에 결합된 육지표면 및 토양 과정 모델들의 특성)

  • Park, Seon K.;Lee, Eunhee
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 2005
  • Land-surface and soil processes significantly affect mesoscale local weather systems as well as global/regional climate. In this study, characteristics of land-surface models (LSMs) and soil models (SMs) that are frequently coupled into mesoscale meteorological models are investigated. In addition, detailed analyses on three LSMs, employed by the PSU/NCAR MM5, are provided. Some impacts of LSMs on heavy rainfall prediction are also discussed.

On the Surface Moisture Availability Parameters to Estimate the Surface Evaporation (증발량 추정을 위한 지표면 가용 수분 계수)

  • 황병화;황수진
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.427-435
    • /
    • 1995
  • In order to discuss the differences among the SMP(Surface Moisture Availability Parameter), by previous researchers on the basis of their own theoretical and empirical background, we assessed the SMP according to the soil types and volumetric soil water contents. The results are as follows. There are differences among all the five SMAPs. There's a tendency that the larger grain size, the higher value of parameters. And they divided into two groups for their value: one group has parameters with exponential function and the other with cosine and linear function. The maximum difference between the two groups appears when the volumetric soil water contents are 0.07m3m-3 for sand, 0.l1m3m-3 for loam, 0.12 for clay, and 0.13m3m-3 for silt loam. So, these differences must be considered when we estimate the surface evaporation rate. From field data, the paddy field soil around Junam reservoir is classified as a silt has high wetness, 0.56. So, the parameter obtained from the field measurement is much higher than that of Clapp and Hornberger(1978)'s Table. This study treated the SMP for a certain point of time in winter season. But if we measured the soil water contents continuously, we could obtain better time-dependent parameter. Key words : SMAP(Surface Moisture Availability Parameter), Paddy field, Volumetric soil water content, Evaporation, Capillary potential.

  • PDF

Verification of Surface Scattering Models and Inversion Algorithms with Measurements of Polarimetric Backscattering Coefficients of a Bare Soil Surface (토양 표면에서의 편파별 후방 산란 계수 측정을 통한 산란 모델과 Inversion 알고리즘의 검증)

  • Hong, Jin-Young;Jung, Seung-Gun;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1172-1180
    • /
    • 2006
  • The backscattering coefficients of a bare soil surface were measured using an R-band polarimetric scatterometer, which were used to verify the validities of scattering models and inversion algorithms. The soil moisture contents and the surface roughness parameters (the RMS height and correlation length) were also measured from the soil surface. The backscattering coefficients were obtained from several scattering models with these surface parameters, and the computation results were compared with the measured backscattering coefficients. The soil moisture contents of the surface were retrieved from the measured backscattering coefficients, and compared with the measured surface parameters. This paper shows how well the scattering models agree with the measurements, and also shows the inversion results.

The Salt Accumulation Model on the Soil Surface by Evaporation, Transpiration and Rainfall

  • Chang, Nam-Kee;Kim, Ju-Hoon
    • The Korean Journal of Ecology
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 1978
  • The salt accumulation on the soil surface can be mathematically described. Although the movement of salts in soil solution is expressed in terms of mathematical model, which has certain limitations in practical application, except the exchangeable and absorbable state salts in soil solution. This model is illustrated by analyticl experiments in which evaporation from the bare soils, transpiration of plants and rainfall are required. Agreement between the model and the measured data was satisfactory, which validating the salt accumulation theory on the soil surface.

  • PDF

Mercury Exchange Flux from Two Different Soil Types and Affecting Parameters

  • Park, Sang-Young;Kim, Pyung-Rea;Han, Young-Ji
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.199-208
    • /
    • 2013
  • Mercury exchange fluxes between atmosphere and soil surface were measured in two different types of soils; lawn soil (LS) and forest soil (FS). Average Hg emission from LS was higher than from FS although the soil Hg content was more than 2 times higher in forest soil. In LS, Hg emissions were much greater in warm season than in cold season; however, deposition was dominant in FS during warm season because of leafy trees blocking the solar radiation reaching on the soil surface. In both LS and FS, Hg fluxes showed significantly positive correlations with UV radiation and soil surface temperature during cold season. In addition, it was observed that emission showed positive correlation with UV radiation and soil temperature while there was negative relationship between deposition and UV radiation.

A Pilot Experiments for Evaluation of Cover Soil Loss from Inclined Upland around Remediated Abandoned Mine Site - The Condition of Chemical Characteristics and Inclination - (광해복원 경사지 밭의 토양유실 평가를 위한 현장실험 - 화학적 성질과 경사도 조건에서 -)

  • Yun, Sung-Wook;Kang, Hui-Cheon;Kwon, Yo-Seb;Koh, Il-Ha;Jeong, Mun-Ho;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • In-situ pilot experiment was carried out to establish a countermeasure on the soil loss from the hill side uplands that was rehabilitated by soil remediation method nearby abandoned mine sites for 2 years. It was considered that the affect of an inclination of cover surface, a stabilization treatment of cover layer by lime and steel refining slag (SRS) and a vegetation of soil surface as an effect factors in the experiment. It was constructed 4 lysimeters (plots, 22 m long, 4 m width) on the hilly side (37% inclination). One plot was control and two plots was treated by 1% lime and SRS. A remind one plot was modified a inclination to 27% to compare the affect of inclination on the amount of cover soil loss. It was attached a reservior tank and water level gauge in the end of lysimeters to measure the amount of the surface water flow and soil loss. It was also installed the automated sensors that could be collect the precipitation, soil moisture content, tension of cover layer in each plots. It was observed that the event of precipitation were caused the soil loss and it were related the physical and chemical properties of cover soil and inclination of surface layer of plots. During the experiment, it was exceeded the national regulation (50 t/ha/yr) in 37% inclination plots even though it was vegetated on the cover soil surface. However, in 27% inclination plot, it was shown that the amount of soil loss was maintained below the national regulation and, more ever, vegetation could reduce the the amount of soil loss. Therefore it was expected that such results could be applied to the future design of rehabilitation projects on the polluted farmland nearby abandoned mine sites.