• Title/Summary/Keyword: Soil supported wall

Search Result 32, Processing Time 0.027 seconds

Excavation Behavior of an Earth Retaining Wall Supported by Large Diameter Soil-cement Blocks (대구경 소일-시멘트 교반체로 보강한 토류벽의 굴착 시 거동 분석)

  • Kim, YoungSeok;Choo, Jinhyun;Cho, Yong Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.65-74
    • /
    • 2011
  • This paper presents an analysis of excavation behavior of an earth retaining wall supported by large diameter soil-cement blocks at a field trial site. The concept and design philosophy of the large soil-cement block reinforcement are described first. The wall behavior during sequential excavations up to 9.8 m is analyzed based on the measured lateral wall movements and earth pressures. The settlements of adjacent ground are examined by field measurements and inverse numerical analysis. The results indicate that, when the lengths of the soil-cement blocks were over 0.45 H (H: wall height), the displacements and the earth pressures induced by the excavations were similar to those supported by conventional methods such as soil nailing.

A parametric investigation on effect of supporting arrangements on earth retention system

  • Ali Murtaza Rasool;Fawad S. Niazi;Tauqir Ahmed;Mubashir Aziz
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.507-518
    • /
    • 2023
  • The effects of various supporting arrangements have been investigated on an excavation support system using a numerical tool. The purpose of providing different supporting arrangements was to limit the pile wall deflection in the range of 0.5% to 1% of the excavation depth. Firstly, a deep excavation supported by sheet pile wall was modeled and the effects of sheet pile wall thickness, excavation depth and distance to adjacent footings from sheet pile wall face were explored on the soil deformation and wall deflection. Further analysis was performed considering six different arrangements of tieback anchors and struts in order to limit the wall deflections. Case-01 represents the basic excavation geometry supported by sheet pile wall only. In Case-02, sheet pile wall was supported by struts. Case-03 is a sheet pile wall supported by tieback anchors. Likewise, for the Cases 04, 05 and 06, different arrangements of struts and tieback anchors were used. Finally, the effects of different supporting arrangements on soil deformation, sheet pile wall deflection, bending moments and anchor forces have been presented.

Singapore Case Study of Self-Supported Diaphragm Wall Method Using Counterfort Technique (부벽식 기법을 사용한 자립식 지하연속벽 공법의 싱가폴사례)

  • Jeong, Gyeong-Hwan;Park, Hun-Kook;Shin, Min-Sik;Han, Kyoung-Tae;Ryu, Ji-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.605-613
    • /
    • 2008
  • Application of anchored or strutted wall system for the earth retention of excavation works in a populated urban area or a poor soil deposit can be limited due to various restrictions. Since the strut becomes longer in a wide excavation site, the stability of an earth retaining wall is decreased, the wall deformation is increased, and the ground settlement is also increased due to an increased buckling or bending deformation of struts. Especially, in a populated urban area, the installation of anchors can be problematic due to the property line of adjacent structures or facilities. Thus, a new concept of earth retaining system like Self-Supported diaphragm Wall can solve several problems expected to occur during excavation in the urban area. Application of self-supported counterfort diaphragm wall was verified in this paper though comparing the design of self-supported counterfort diaphragm wall with the data monitored during excavation in Singapore.

  • PDF

Numerical Analysis of Self-Supported Earth Retaining Wall with Stabilizing Piles (2열 자립식 흙막이 공법의 거동특성에 관한 수치해석적 연구)

  • Sim, Jae-Uk;Jeong, Sang-Seom;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.35-46
    • /
    • 2015
  • In this study, the behavior of self-supported earth retaining wall with stabilizing piles was investigated by using a numerical study and field tests in urban excavations. This earth retaining wall can provide stable support against lateral earth pressures through its use of stabilizing piles that provide passive resistance to lateral earth pressures arising due to ground excavations. Field tests at two sites were performed to verify the performance of instrumented retaining wall with stabilizing piles. Furthermore, detailed 3D numerical analyses were conducted to provide insight into the in situ wall behavior. The 3D numerical methodology in the present study represents the behavior of the self-supported earth retaining wall with stabilizing piles. A number of 3D numerical analyses were carried out on the self-supported earth retaining wall with stabilizing piles to assess the results stemming from wide variations of influencing parameters such as the soil condition, the pile spacing, the distance between the front pile and the rear pile, and the pile embedded depth. Based on the results of the parametric study, the maximum horizontal displacement and the maximum bending moment significantly decreased when the retaining wall with stabilizing piles is used. Moreover, the horizontal displacement reduction effect of influencing parameters such as the pile spacing and the distance between the front pile and the rear pile is more sensitive in sandy soil, with a higher friction angle compared to clayey soil. In engineering practice, reducing the pile spacing and increasing the distance between the front pile and the rear pile can effectively improve the stability of the self-supported earth retaining wall with stabilizing piles.

Case Study of Self-Supported Diaphragm Wall Method Using Counterfort Technique (부벽식 기법을 사용한 자립식 지하연속벽 공법의 사례 연구)

  • Jeong, Gyeong-Hwan;Park, Hun-Kook;Shin, Min-Sik;Han, Kyoung-Tae;Ryu, Ji-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.276-285
    • /
    • 2006
  • Application of anchored or strutted wall system for the earth retention of excavation works in a populated urban area or a poor soil deposit can be limited due to various restrictions. Since the strut becomes longer in a wide excavation site, the stability of an earth retaining wall is decreased, the wall deformation is increased, and the ground settlement is also increased due to an increased buckling or bending deformation of struts. Especially, in a populated urban area, the installation of anchors can be problematic due to the property line of adjacent structures or facilities. Thus, a new concept of earth retaining system like Self-Supported diaphragm Wall can solve several problems expected to occur during excavation in the urban area. In this study, Numerical analyses of counterfort diaphragm wall was introduced and the monitored data from the site was compared with the original results of numerical analyses. Also, in the case of the deep excavation applied the counterfort diaphragm wall, numerical analyses was performed to predict the wall deformation and the reinforcement to reduce the wall deformation was suggested.

  • PDF

Application for Self-Supported Retaining Wall Using Deep Cement Mixing (DCM(심층혼합처리공법)에 의한 자립식 흙막이 적용사례)

  • Jeong, Gyeong-Hwan;Kim, Yong-Wan;Shin, Min-Sik;Han, Kyoung-Tae;Kim, Tae-Hyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.257-267
    • /
    • 2006
  • The earth retaining wall systems for excavation works in a populated urban area or a poor soil deposit can be limited due to various restriction. Thus there are various methods to be applied for them such as the soldier pile method, the diaphragm wall with counterfort and so on. In this study, the self-supported earth retaining wall using the DCM(Deep Cement Mixing) method, including its merits, demerits and some important characteristics occured in the design and the construction stage, was introduced. It might be reference for the other design and construction procedures using the DCM method.

  • PDF

Effects of Rice Hull Addition and Bin Wall Characteristics on Pig Slurry Composting Properties (왕겨 이용 방법과 옹벽이 돈분 퇴비화에 미치는 효과)

  • ;Craig, Ian P
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • This work was carried out to investigate the effects of rice hull continuously utilized and/or replenished on the composting properties and to obtain the fundamental data between an unsupported wall and a soil supported wall during the period of composting with pig slurry in winter season. There were no the temperature holding effects in soil supported wall. New compost facility design for the temperature holding effects from a soil supported wall was required. The results were as follows; 1. Composting 1㎥ of pig slurry caused to save on 0.31㎥ of bulking agent in the unsupported wall in comparison with a soil supported wall in the rice hull single addition, and 0.45㎥ in the rice hull gradual addition. 2. The pile in the rice hull single addition had a high temperature in 4 days of composting indicating $71^{\circ}C$ and had a tendency in repeating periodically between $40^{\circ}C$ and $65^{\circ}C$ till 43 days of composting. And also the temperature of the pile was maintained between $48^{\circ}C$ and $28^{\circ}C$ after 50 days of composting. The pile of a rice hull gradual addition had the lower point of the temperature high increasingly according to adding up rice hull during the 35 days of composting. 3. The pH recorded in the rice hull single addition was higher(8.35∼10.02) compared to the rice hull gradual addition(8.6∼9.8). The pile of a rice hull single addition had a tendency in abruptly decreasing pH of the unsupported wall during the period of between 0.363$\textrm m^3$ and 0.537$\textrm m^3$ as a unit of pig slurry per rice hull. EC depending upon the way in adding rice hull was changed between 1.10 mS/$\textrm {cm}^3$ and 1.87 mS/$\textrm {cm}^3$. 4. The organic matter in an unsupported wall of the hull single addition was maintained the level of 55% during the period between 0.119㎥ and 0.363㎥ as a unit of pig slurry per rice hull while in the soil supported wall between 48 and 70. Water soluble C:N ratio was maintained between 1 and 2 in the rice hull single addition, while between 1 and 3 in the rice hull gradual addition. 5. Fertilizer constituents were detected higher level in the unsupported wall than in the soil supported wall in all treatments. This was dependant upon the input of pig slurry.

  • PDF

A Study on Practices and Troubles of Reinforced Soil Wall (국내 보강토 옹벽 적용 현황 및 문제점 조사 연구)

  • Park, Jong-Kwon;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.65-75
    • /
    • 2012
  • Since the modem reinforced soil wall technology was introduced in domestic civil engineering society in the year 1980, the reinforced soil walls have been extensively used because these technologies have advantages such as economical efficiency, graceful appearance, and easy construction. This paper describes the application of reinforced soil wall, design criteria, and construction problems. Many cases of troubles, which include a severe deformation of facing, cracks of facing block, overall sliding failure and so on, have been reported. Inappropriate design and construction management mainly induce these problems. The technological level of design and quantity control for reinforced soil wall is not sufficiently supported to cope with the growth quantity of reinforced soil wall construction market and the increasing number of construction companies. The unified standard design and construction criteria of reinforced soil wall should be established with the detail consideration of overall performance and stability. The quality control of design and construction, and cost of construction must be seriously executed to construct a high quality of reinforced soil wall.

The Design and Numerical Analysis Method of Inclined Self-Supported Wall Using Cement Treated Soil (시멘트혼합처리토를 활용한 경사 자립식 흙막이벽의 설계법과 해석법에 관한 연구)

  • Kang-Han Hong;Byung-Il Kim;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.11-25
    • /
    • 2023
  • In this study, the design and numerical analysis method of the inclined self-supported wall using cement treated soil were studied. In the case of the inclined self-supported wall, the active earth pressure decreased due to the decrease in the coefficient, Ka according to the slope (angle) and the weight decreasing effect, thereby increasing the overall stability. The wall with the slope caused a change in failure mode from overturning to sliding on the excavation side, and the optimal slope was evaluated to be about 10°. Compared to the strength reduction method, the overall stability in numerical analysis results in conservative results in limit equilibrium analysis, so it was found that this method should be attended when designing. As a result of the parameteric study, the stability on bearing capacity and compression failure did not significantly increase above the slope of 10° when the surcharge was small (about 20kPa or less). In the case of cohesion of the backfill, The results similar to numerical analysis were found to consider cohesion. It was evaluated that stability on sliding, oveturning, shear, and tension failure increases in proportion to the thickness of the wall, but there is no significant change in the stability on the bearing capacity and compressive failure regardless of the thickness of the wall above a certain angle (about 10°).

A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation

  • Xiang, Yuzhou;Goh, Anthony Teck Chee;Zhang, Wengang;Zhang, Runhong
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.315-324
    • /
    • 2018
  • With rapid economic growth, numerous deep excavation projects for high-rise buildings and subway transportation networks have been constructed in the past two decades. Deep excavations particularly in thick deposits of soft clay may cause excessive ground movements and thus result in potential damage to adjacent buildings and supporting utilities. Extensive plane strain finite element analyses considering small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by diaphragm walls and bracings. The excavation geometrical parameters, soil strength and stiffness properties, soil unit weight, the strut stiffness and wall stiffness were varied to study the wall deflection behaviour. Based on these results, a multivariate adaptive regression splines model was developed for estimating the maximum wall deflection. Parametric analyses were also performed to investigate the influence of the various design variables on wall deflections.