• Title/Summary/Keyword: Soil stability

Search Result 1,424, Processing Time 0.028 seconds

Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis

  • Khezri, Nima;Mohamad, Hisham;Fatahi, Behzad
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.471-492
    • /
    • 2016
  • Underground tunnelling is one of the sustainable construction methods which can facilitate the increasing passenger transportation in the urban areas and benefit the community in the long term. Tunnelling in various ground conditions requires careful consideration of the stability factor. This paper investigates three dimensional stability of a shallow circular tunnel in a layered soil. Upper bound theorem of limit analysis was utilised to solve the tunnel face stability problem. A three dimensional kinematic admissible failure mechanism was improved to model a layered soil and limiting assumptions of the previous studies were resolved. The study includes calculation of the minimum support pressure acting on the face of the excavation in closed-face excavations. The effects of the characteristics of the layers on the minimum support pressure were examined. It was found that the ratio of the thickness of cover layers particularly when a weak layer is overlying a stronger layer, has the most significant influence on the minimum tunnel support pressure. Comparisons have been made with the results of the numerical modelling using FLAC3D software. Results of the current study were in a remarkable agreement with those of numerical modelling.

Permeability Influence of Base Soil for Analysis of Road Landfill Stability (도로성토사면의 안정성 분석시 원지반 투수성의 영향)

  • Kim, Young-Muk;Kim, Chung-Ki;Kim, Man-Goo;Kim, Geon-Hae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.890-897
    • /
    • 2005
  • Stability of embankment is influenced on landfill condition, permeability, shear strength and soil engineering propensity and so on, and need examination in reply because is different according to change of soil property of foundation ground and permeability condition. Analyzed seepage behaviour by finite element method for embankment, and change permeability of base to analyze effect that permeability of ground water table formation before embankment and analyze seepage behaviour to typical embankment in this research. In the case of permeability of foundation ground is 10 more than landfill permeability, rise of groundwater table was changed slightly. Pore water pressure was decreased slowly in landfill after rainfall. The effect of permeability of foundation ground was effected in change of pore water pressure. For permeability of foundation ground is 10 more than landfill, stability of road landfill was small changed during rainfall. But in the case of permeability of base soil similar to landfill permeability, road landfill stability was large decreased during rainfall.

  • PDF

A Study of Limit State Design Method in Soil Slope (토사면의 한계상태 설계법에 관한 연구)

  • Joung, Gi-Hun;Kim, Jong-Min;Jang, Bum-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.129-136
    • /
    • 2005
  • The deterministic analysis method has generally used to evaluate the slope stability and it evaluates the slope stability with decision value that is a representative value of design variables. However, one of disadvantages in the deterministic approach is there is not able to consider the uncertainty of soil strength properties, even though it is the biggest influential parameter of the slope stability. On the other hand, the limit state design(LSD) can take a consideration of uncertainties and computes both the reliability index and the probability of failure. LSD method is capable of overcoming the disadvantages of deterministic method and evaluating the slope stability more reliably. In this study, both the mean value and standard deviation of the internal land's representative soil strength properties applied to process the LSD method. The major purpose of this study is to gauge the general applicability of the limit state design in soil slope and to weigh the comparative validity of the proposed partial safety factor. In order to reach the aim of this study, the partial safety factor and resistance factor which totally satisfied the slope's overall safety factor were calculated by the load and resistance safety factor design (LRFD).

  • PDF

Evaluation of the Structural Stability of Rammed Earth Construction :The Case Restoration Project of the Stone Pagoda at Mireuksa Temple Site in Iksan

  • Min, Hwang-Sik;Choen, Deuk-Youm
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • The restoration of foundations supporting the immense load of the stone pagoda at Mireuksa Temple Site prioritizes securing its structural stability. But so far, rammed earth construction is still not easy to determine the structural stability. This paper aims to emphasize that a scientific experimental study was conducted on a rammed earth construction, to identify its methodology and obtain objective data about structural stability of the foundation work. An experimental study fabricated specimens from the soil that had been removed during the excavation survey, determined the allowable bearing capacity through plate load tests, and compared the results with the predicted stress after reassembly of the stone pagoda to estimate the structural stability. Then, the repair method was selected based on the experimental study result. The evaluation method of the restoration of foundations consisted of an examination of the allowable bearing capacity and settlement. The allowable bearing of the reinforced foundation was more than twice the contact pressure under the stacked stones of the pagoda. The possibility of settlement of the rammed earth foundation soil layer during the pagoda assembly is expected to be very low because the settlement amount of the reformed soil layer is less than half of the settlement of the stabilized existing soil layer.

Reliability-Based Analysis of Slope Stability Due to Infiltration (침투에 대한 불포화 사면의 신뢰성 해석)

  • Cho, Sung-Eun;Lee, Jong-Wook;Kim, Ki-Young;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.649-654
    • /
    • 2005
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common over the world. One of the key factors that dominate slope stability is hydrological response associated with infiltration. Hence, the soil-water profile during rainfall infiltration into unsaturated soil must me examined to evaluate slope stability. However, the hydraulic response of unsaturated soil is complicated by inherent uncertainties of the soil hydraulic properties. This study presents a methodology for assessing the effects of parameter uncertainty of hydraulic properties on the response of a analytical infiltration model using first-order reliability method. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Sensitivities of the probabilistic outcome to the basic uncertainties in the input random variables are provided through importance factors.

  • PDF

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Soil-Water Characteristic Curves for Drying and Wetting Processes in Granite-Weathered Soil Based on Variations in Fine Contents (세립분 함량을 고려한 국내 화강풍화토의 건조 및 습윤 함수특성곡선 분석)

  • Lee, Sangbeen;Ryou, Jae-Eun;Seo, Jinuk;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2024
  • In current slope stability analysis techniques, slope stability is evaluated based on the saturated-soil theory. However, soil-water characteristics change frequently depending on the climate. Therefore, because the saturated soil theory has limitations, the application of the unsaturated soil theory is necessary for slope stability. It is also important to evaluate the engineering properties of unsaturated soil because the capillary absorption capacity is reduced due to heavy rain, thereby causing a reduction in slope stability. In this study, soil-water characteristic tests were performed using four samples with different fine contents (0%, 10%, 20%, and 30%) using granite-weathered soil in domestic production areas. In particular, to consider the previously conducted drying process as well as the evaluation of stability due to heavy rain on the actual slope, a wetting process was conducted, in which the water content was increased. In addition, the van Genuchten (1980) model, which is the most consistent theoretical equation for the experiment, was used with various theoretical equations, and the parameters were analyzed according to the fine content of the granite-weathered soil for the drying and wetting processes.

Plant co-occurrence patterns and soil environments associated with three dominant plants in the Arctic

  • Deokjoo Son
    • Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Background: The positive effects of Arctic plants on the soil environment and plant-species co-occurrence patterns are known to be particularly important in physically harsh environments. Although three dominant plants (Cassiope tetragona, Dryas octopetala, and Silene acaulis) are abundant in the Arctic ecosystem at Ny-Ålesund, Svalbard, few studies have examined their occurrence patterns with other species and their buffering effect on soil-temperature and soil-moisture fluctuation. To quantify the plant-species co-occurrence patterns and their positive effects on soil environments, I surveyed the vegetation cover, analyzed the soil-chemical properties (total carbon, total nitrogen, pH, and soil organic matter) from 101 open plots, and measured the daily soil-temperature and soil-moisture content under three dominant plant patches and bare soil. Results: The Cassiope tetragona and Dryas octopetala communities increased the soil-temperature stability; however, the three dominant plant communities did not significantly affect the soil-moisture stability. Non-metric multidimensional scaling separated the sampling sites into three groups based on the different vegetation compositions. The three dominant plants occurred randomly with other species; however, the vegetation composition of two positive co-occurring species pairs (Oxyria digyna-Cerastium acrticum and Luzula confusa-Salix polaris) was examined. The plant species richness did not significantly differ in the three plant communities. Conclusions: The three plant communities showed distinctive vegetation compositions; however, the three dominant plants were randomly and widely distributed throughout the study sites. Although the facilitative effects of the three Arctic plants on increases in the soil-moisture fluctuation and richness were not quantified, this research enables a deeper understanding of plant co-occurrence patterns in Arctic ecosystems and thereby contributes to predicting the shift in vegetation composition and coexistence in response to climate warming. This research highlights the need to better understand plant-plant interactions within tundra communities.

Changes of Performance of Soil-Cement Barrier due to Migration of Acids (산 이동에 따른 심층혼합기둥체 차수벽의 성능변화)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.189-196
    • /
    • 2003
  • Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.

  • PDF

An Experimental Study on the Effect of Vegetation Roots on Slope Stability of Hillside Slopes (뿌리의 강도가 자연사면 안정에 미치는 영향에 관한 실험연구)

  • Lee, In-Mo;Seong, Sang-Gyu;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.51-66
    • /
    • 1991
  • In the stability analysis of hillside slopes, the roots of vegetation have been considered to act as a soil reinforcement. In order to predict the amount of increase in soil shear resistance, produced by tensile strength of roots that intersect a potential slip surface in hillside slopes, new soil -root interaction models are proposed in this paper. For this purpose, firstly, laboratary teats and in-situ tests wert performed on soil-root systems, and experimental results were compared with a couple of soil-root interaction models which had been proposed by Gray, Waldron, and Wu etc. Based on this comparison, a new soil-root interaction model is proposed. Secondly, a probabilistic soil-root model is proposed based on statistical analysis considering random nature of root distribution, root characteristics, and soil-root interactions. Finally, to examine the effect of this root reinforcement system on stability of hillside slopes, a simple three-dimensional stability analysis was performed, and it was shown that root reinforcement had a significant stabilizing influence on shallow slips rather than deep slips in hillside slopes.

  • PDF