• Title/Summary/Keyword: Soil slope

Search Result 1,774, Processing Time 0.026 seconds

Developing Dominant Tree Height Growth Curve and Site Index Curves for Pinus densiflora and Chamaecyparis obtusa Grown in Jeolla-do (전라도 지역 소나무와 편백에 대한 수고생장모델 및 지위지수곡선 개발)

  • Park, Hee-Jung;Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.364-371
    • /
    • 2019
  • This study was conducted to provide the basic information for a reasonable forest management plan and sustainable forest management by developing a dominant tree height growth model using diameter at breast height (DBH) and site index curves for Pinus densiflora and Chamaecyparis obtusa growing in Jeolla-do. The altitude, slope, orientation, soil type, height and DBH of a dominant tree, and the ages of trees were measured for 3055 Pinus densiflora trees (611 plots) and 3345 Chamaecyparis obtusa trees (699 plots), and these data were used to develop a customized afforestation map. In the dominant tree height growth model, the relationship to DBH was used in the Petterson, Michailow, and log equations. Also, a dominant tree height growth model in relationship to age used the Chapman-Richards, Schumacher, and Gompertz equations. The Petterson equation, which has a lower mean square error, was used to model dominant tree height growth in relationship to DBH. In the model of dominant tree height growth in relationship to age, three kinds of equations were considered to have little statistical difference. Therefore, the Chapman-Richards equation was chosen for modeling on the national level. Thirtyyears was used as the base age, which is an important factor for estimating the site index curves. In the results, a more varied range of site index family curves with 6-18 was developed for Pinus densiflora, and with 6-22 for Chamaecyparis obtusa. As the new site index curves indicated influences on growth of Pinus densiflora and Chamaecyparis obtusa, a reasonable forest management plan will be possible in the future for Jeolla-do.

Landslide Susceptibility Assessment Considering the Saturation Depth Ratio by Rainfall Change (강우변화에 따른 토층 내 침투깊이를 고려한 산사태위험지수 개발)

  • Kwak, Jae Hwan;Kim, Man-Il;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • Understanding rain infiltration into the ground is an important feature of landslide risk evaluation. In this study, a landslide risk index for the study area is suggested, wherein the result of the landslide risk evaluation, based on the factor of safety (FS), is used. The landslide risk index is a landslide risk prediction index that utilizes the saturated depth ratio of the ground. Based on the landslide risk result for the study area, it was found that the FS was first to decrease. However, it gradually became convergent over the 50-year rainfall intensity study period, a result that is similar to the relationship between the saturated depth ratio and soil thickness. Moreover, saturated depth was also found to be deeper on gentle slopes than steep slopes. As such, the landslide risk index, based on the Inhu-ri study result, is thus suggested. Additionally, the suggested landslide risk index was compared and analyzed against the rainfall intensity of previous landslide experience. Results thus revealed that almost all landslides that occurred were over 0.7, which is the second grade, based on the landslide risk index.

Proper Monitoring Methods for Safety Management of Tailings Dam (광물찌꺼기적치장의 안전관리를 위한 적정 모니터링 방안 연구)

  • Jung, Myung Chae;Kim, Jeong Wook;Hwang, In-ho;Yang, In Jae;Park, Jay Hyun;Park, Ju Hyun;Kim, Tae Youp
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.576-587
    • /
    • 2018
  • This study has focused on analysis factors affecting safety monitoring system at tailings sites, and the evaluation equipment to monitor the factors. Twenty sites at eighteen mines with unsafe conditions were selected to examine the equipment. There were three main factors influenced safety in the sites including surface erosion, piping, and slope instability. In detail, the surface erosion was divided into three sub-factors (planting, soil-topping layer, and tailings), piping into three sub-factors (liner, rain protection facility and leachate), and slop instability was also divided into three sub-factors (slop, concrete wall, and reinforcing wall). As results of in-field measurement, a CCTV was the most effective facility, and electrical resistivity survey, acoustic sensing, thermal liner sensor, structure inclinometer, rainfall meter, and flowmeter were also highly effective. According to applications of the facilities in the unstable tailings, structural defects were mainly found in the piping, which was the most important monitoring factor for safety management of tailings sites.

A analysis of plant communities distribution characteristics of Boseong river wetland using ordination (서열법(ordination)을 이용한 보성강 하천 습지의 식물군락 분포 특성 분석)

  • Lee, Il Won;Kim, Kee Dae
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.354-366
    • /
    • 2022
  • To analyze the distribution of plant communities growing in river wetlands and the relationship between biotic and abiotic environmental factors, plant communities and environmental factors were investigated in river wetlands in the Boseong River. The Boseong River Wetland, the research site, consists of Hwapyeong Wetland, Bangujeong Wetland, and Seokgok Wetland. From June to September 2022, a plant community survey was conducted from the perspective of physiognomical vegetation, and the coverage of the emerging species followed the Braun-Blanquet scale. Plant species and the coverage of each species were recorded in the quadrant for plant community survey, and the cover of the quadrant, the total number of species, and the number of exotic species were measured as biological factors. As abiotic factors, altitude, orientation, inclination, soil texture, litter layer depth, dominant species diameter at breast height, and topography were recorded. In a total of 50 square plots, the most common Salix koreensis and Phragmites japonicus communities were found, and the community with the highest Shannon species diversity index was Phragmites japonicus-Echinochloa caudata community. As a result of ordination analysis by DCCA, the most significant clusters were separated according to topographic factors such as leeve, leeve slope, upper floodplain, lower floodplain, upper waterside, middle waterside, lower waterside, river island and opem water. As rare plants that need to be preserved in river wetlands, Hydrocharis dubia and Penthorum chinense were found in lower waterside, and it was found that the management of the river in the reservoir is necessary in line with the topographical distribution of ecosystem-disrupting plants, such as Paspalum distichum var. indutum.

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.

A Study on the Development of "Bufo gargarizans" Habitat Suitability Index(HSI) (두꺼비 서식지 적합성 지수(HSI) 모델개발을 위한 연구)

  • Cho, Gun-Young;Koo, Bon-Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.23-38
    • /
    • 2022
  • This study investigates the characteristics and physical habitat requirements for each Bufo gargarizans life history through a literature survey. After deriving variables for each component of Bufo gargarizans, in order to reduce regional deviations from eight previously studied literature research areas for deriving the criteria for variables, a total of 12 natural habitats of Bufo gargarizanss are selected as spatial ranges by selecting four additional sites such as Umyeonsan Ecological Park in Seoul, Wonheungibangjuk in Cheongju in the central region, Changnyeong Isan Reservoir in the southern region, and Mangwonji in Daegu. This study presents Bufo gargarizans SI, a species endemic to Korea, whose population is rapidly declining due to large-scale housing site development and road development, and develops a Bufo gargarizans HSI model accordingly to improve the function of the damaged Bufo gargarizans habitat and to present an objective basis for site selection of alternative habitat. At the same time, it provides basic data for adaptive management and follow-up monitoring. The three basic habitat requirements of amphibians, the physical habitat requirements of Bufo gargarizans, synthesized with shelter, food, and water, and the characteristics of each life history, are classified into five components by adding space and threats through literature research and expert advice. Variables are proposed by synthesizing and comparing the general characteristics of amphibians, among the previously studied single species of amphibians, the components of HSI of goldfrogs and Bufo gargarizans, and the ecological and physical environmental characteristics of Bufo gargarizans. Afterwards, through consultation with an amphibian expert, a total of 10 variables are finally presented by adjacent forest area(ha), the distance between spawning area and the nearest forest land(m), the soil, the distance from the wetland(m), the forest layered structure, the low grassland space, the permanent wetland area(ha), shoreline slope(%), PH, presence of predators, distance from road(m), presence or absence of obstacles. n order to derive the final criteria for each of the 10 variables, the criteria(alternative) for each variable are presented through geographic information analysis of the site survey area and field surveys of the previously studied literature research area. After a focus group interview(FGI) of 30 people related to the Bufo gargarizans colony in Cheongju, a questionnaire and in-depth interviews with three amphibians experts are conducted to verify and supplement the criteria for each final variable. Based on the finally developed Bufo gargarizans HSI, the Bufo gargarizans habitat model is presented through the SI graph model and the drawing centering on the Bufo gargarizans spawning area

Evaluation of Habitat Suitability of Honey Tree Species, Kalopanax septemlobus Koidz., Tilia amurensis Rupr. and Styrax obassis Siebold & Z ucc. in the Baekdudaegan Mountains using MaxEnt Model (MaxEnt 모형을 활용한 백두대간에 자생하는 주요 밀원수종인 음나무, 피나무, 쪽동백나무의 서식지 적합성 평가)

  • Sim, Hyung Seok;Lee, Min-Ki;Lee, Chang-Bae
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.50-60
    • /
    • 2022
  • In this study, habitat suitability was analyzed for three major honey tree species, namely Kalopanax septemlobus, Tilia amurensis, and Styrax obassis, in the Baekdudaegan Mountains using MaxEnt models. The AUC values indicating the prediction accuracies of the models were 0.747, 0.790, and 0.755 for K. septemlobus, T. amurensis, and S. obassis, respectively. The most important variables for K. septemlobus and T. amurensis were elevation, mean annual temperature, and slope, whereas mean annual temperature, elevation, and mean annual precipitation were the most important predictors for S. obassis. For all three studied species, elevation and mean annual temperature were the most important topographic and climatic factors, respectively, indicating that such variables are crucial for explaining species distribution. Honey tree species are essential resources in forest beekeeping, a high value-added process for improving forest income, and this study identified sites with the potential for management of such species in the Baekdudaegan Mountains, where it may be possible to establish a honey forest. However, the accuracy of the models should be improved through comprehensive analysis with abiotic variables, such as soil properties and aridity, which affect the distribution of honey tree species, as well as biotic variables, such as interspecific competition.

Erodibility evaluation of sandy soils for sheet erosion on steep slopes (급경사면의 면상침식에 대한 사질토양의 침식성 평가)

  • Shin, Seung Sook;Park, Sang Deog;Hwang, Yoonhee
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.291-300
    • /
    • 2022
  • Artificial disturbance in mountainous areas increases the sensitivity to erosion by exposure of the subsoil with a low loam ratio to the surface. In this study, rainfall simulations were conducted to evaluate the erodibility of sand and loamy sand in the interrill erosion by the rainfall-induced sheet flow. The mean diameters of sand and loamy sand used in the experiment were 0.936 mm and 0.611 mm, respectively, and the organic matter content was 2.0% and 4.2%, respectively. In the experimental plot, the runoff coefficient of overland flow increased 1.16 times in loamy sand rather than sand. Mean sediment yields of loamy sand and sand by sheet erosion were 3.71kg/m2/hr and 1.13kg/m2/hr respectively. The erodibility, the rate of soil erosion for rainfall erosivity factor, was 3.65 times greater in loamy sand than in sand. As the gradient of the steep slope increased from 24° to 28°, the sediment concentration and the erodibility for two soils increased by about 20%. The erodibility factor K of sandy soils for small plots was overestimated compared to the measured erodibility. This means that RUSLE can overestimate the sediment yields by sheet erosion on sandy soils.

Analysis of Forest Environmental Factors on Torrent Erosion control work area in Gyeongsangnam-do - Focus on Erosion Control Dam and Stream Conservation - (경남지역 야계사방사업지의 산림환경특성 분석 - 사방댐 및 계류보전사업을 중심으로 -)

  • Kang, Min-Jeng;Kim, Ki-Dae;Oh, Kang-San;Park, Jin-Won;Park, Jae-Hyeon
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.111-120
    • /
    • 2016
  • The objective of this study was to provide basic information for selecting the right timing and the right place of erosion control of stream on Gyeongsangnam-do. In order to achieve this objective, a total of 526 erosion control dams and 230 mountains stream conservation facilities on the constructed places and construction planned places for the erosion control were investigated on site, forest physiognomy, and hydrologic conditions. The erosion control dams and mountain stream conservation facilities were mostly constructed in the area, which has the sedimentary rock, 200-400m of altitude, a slope of 21~30°, and II of landslide hazard map. Among the forest environmental factors, it was only similar to the construction frequency in the areas that have small diameter class, III age class. Also, we investigated the hydrological environmental factors that determine the size and numbers of erosion control dam. The places constructed to the highest frequency were below 50ha in the area, 2.1~4.0km/㎢ of drainage density, longitudinal water system, 61~90mm of maximum precipitation per hour, and 201~300mm of day maximum precipitation. As the results, the sites and floodgate conditions between the constructed places and stream conservation facilities for the erosion control showed to be very similar. Therefore, these results indicate that the erosion control of the stream of the areas, which have the disruption of mountain peaks and the high erosion risk areas, should be used on both the erosion control dam and stream conservation facilities.

Effect of Wind Load on Pile Foundation Stability in Solar Power Facilities on Slopes (풍하중이 경사지 태양광 발전시설의 기초 안정성에 미치는 영향 분석)

  • Woo, Jong-Won;Yu, Jeong-Yeon;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.47-60
    • /
    • 2023
  • At present, in South Korea, there is a growing concern regarding solar power facilities installed on slopes because they are prone to damage caused by natural disasters, such as heavy rainfall and typhoons. Each year, these solar power facilities experience soil erosion due to heavy rainfall and foundation damage or detachment caused by strong wind loads. Despite these challenges, the interaction between the ground and structures is not adequately considered. Current analyses primarily focus on the structural stability under external loads; the overall facility site's stability-excluding the solar structures-in relation to its surrounding slopes is neglected. Therefore, in this study, we use finite-difference method analysis to simulate the behavior of the foundation and piles to assess changes in lateral displacement and bending stress in piles, as well as the safety factor of sloped terrains, in response to various influencing factors, such as pile diameter, spacing between piles, pile-embedding depth, wind loads, and dry and wet conditions. The analysis results indicate that pile spacing and wind loads significantly influence lateral displacement and bending stress in piles, whereas pile-embedding depth strongly influences the safety factor of sloped terrains. Moreover, we found that under certain conditions, the design criteria in domestic standards may not be met.