• Title/Summary/Keyword: Soil sampling

Search Result 571, Processing Time 0.026 seconds

Quantification of Uncertainty Associated with Environmental Site Assessments and Its Reduction Approaches (부지 오염도 평가시 불확실성 정량화 및 저감방안)

  • Kim, Geonha;Back, JongHwan;Song, Yong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Uncertainty associated with a sampling method is very high in evaluating the degree of site contamination; therefore, such uncertainty affects the reliability of precise investigation and remediation verification. In particular, in evaluating a site for a small-sized filling station, underground utilities, such as connection pipes and oil storage tanks, make grid-unit sampling impossible and the resulting increase in uncertainty is inevitable. Accordingly, this study quantified the uncertainty related to the evaluation of the degree of contamination by total petroleum hydrocarbon and by benzene, toluene, ethylene, and xylene. When planning a grid aimed at detecting a hot spot, major factors that influence the increase in uncertainty include grid interval and the size and shape of the hot spot. The current guideline for soil sampling prescribes that the grid interval increase in proportion to the area of the evaluated site, but this heightens the possibility that a hot spot will not be detected. In evaluating a site, therefore, it is crucial to estimate the size and shape of the hot spot in advance and to establish a sampling plan considering a diversity of scenarios.

Spatial Prediction of Soil Carbon Using Terrain Analysis in a Steep Mountainous Area and the Associated Uncertainties (지형분석을 이용한 산지토양 탄소의 분포 예측과 불확실성)

  • Jeong, Gwanyong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Soil carbon(C) is an essential property for characterizing soil quality. Understanding spatial patterns of soil C is particularly limited for mountain areas. This study aims to predict the spatial pattern of soil C using terrain analysis in a steep mountainous area. Specifically, model performances and prediction uncertainties were investigated based on the number of resampling repetitions. Further, important predictors for soil C were also identified. Finally, the spatial distribution of uncertainty was analyzed. A total of 91 soil samples were collected via conditioned latin hypercube sampling and a digital soil C map was developed using support vector regression which is one of the powerful machine learning methods. Results showed that there were no distinct differences of model performances depending on the number of repetitions except for 10-fold cross validation. For soil C, elevation and surface curvature were selected as important predictors by recursive feature elimination. Soil C showed higher values in higher elevation and concave slopes. The spatial pattern of soil C might possibly reflect lateral movement of water and materials along the surface configuration of the study area. The higher values of uncertainty in higher elevation and concave slopes might be related to geomorphological characteristics of the research area and the sampling design. This study is believed to provide a better understanding of the relationship between geomorphology and soil C in the mountainous ecosystem.

Distributions and Correlation of Heavy Metals Sediment, Soil, Weeds and Vegetables on Lower Nakdong River (낙동강 하류 유역의 저니토, 토양, 잡초 및 채소 중의 중금속의 분포와 상관관계)

  • Jeong, Gi-Ho;Kim, Moon-Soon;Jeong, Jong-Hak
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.801-812
    • /
    • 1996
  • We investigated concentrations of heavy metals(Cr, Cd, Zn, Fe, Pb, Cu, and Mnl and correlations between concentrations of heavy metals in the sediment, soil, weeds, and vegetables on the lower Nakdong river. Concentrations of heavy metals on the lower Milyang river was generally lower than those of other sampling area. In the soil, concentration of Pb is generally larger than that of other heavy metals. Generally, concentrations of heavy metals in the sediment show decreasing tendency 8s the sampling area moves toward downstream of the river, but those of in the soil and weeds show increasing tendency. There is no significant correlation between concentration of heavy metals in the soil-sediment, soil-vegetables, sediment-weeds, or vegetables-weeds. Only concentrations of Pb in the vegetables and those of in the weeds show very high correlation.

  • PDF

The Research on The Stability as Fill Material of Soil Defiled by Oil Element and Heavy Metals (중금속 및 유류로 오염된 토질의 성토재료로서의 안정성에 관한 연구)

  • Lee, Chung-Sook;Eom, Tae-Kyu;Choi, Yong-Kyu;Lee, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.5-13
    • /
    • 2004
  • In the site for apartment construction, the contaminated soils of the heavy metal and the oil were appeared. The representative soil samples were sampled at 7 sampling points. To confirm the geotechnical stability of the contaminated soils, the environmental checks for the heavy metal and the oil. The soils of 2 sampling points were contaminated heavily, so it was estimated that these soils must be disused. For 1 sampling point of the slightly contaminated soil, to confirm the re-applicability of fill material, the stability analysis was performed and it was concluded that this soil will be able to re-use.

  • PDF

Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System (SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석)

  • Yoo, Dongsun;Ahn, Jaehun;Yoon, Jongsuk;Heo, Sunggu;Park, Younshik;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

Determination of Variable Rate Fertilizing Amount in Small Size Fields Using Geographic Information System

  • S. I. Cho;I. S. Kang;Park, S. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.236-245
    • /
    • 2000
  • The feasibility of precision farming for small sized fields was studied by determining fertilizing amount of nitrogenous and calcareous to a cite specific region. A detailed soil survey at three experimental fields of 672㎡, 300㎡ and 140㎡ revealed a considerable spatial variation of the pH and organic matter(OM) levels. Soil organic matter was measured using Walkley-Black method and soil pH was measured with a pH sensor. Soil sample was obtained by Grid Node Sampling Method. The soil sampling depth was 10 - 20 cm from the soil surface. To display soil nutrient variation, a soil map was made using Geographic Information System (GIS) software. In soil mapping, soil data between nodes was interpolated using Inverse Distance Weighting (IDW) method. The variation was about 1 - 1.8 in pH value and 1.4 -7 % in OM content. Fertilizing Amount of nitrogenous and calcareous was determined by the fertilizing equation which was proposed by National Institute of Agricultural Science and Technology.(NIAST). The variation of fertilizing amount was about 3 - 11 kg/10a in nitrogenous and 70 - 140 kg/10a in calcareous. The results showed a feasibility of precision fertilizing for small size fields.

  • PDF

Determination of Variable Rate Fertilizing Amount in Small Size Fields for Precision Fertilizing (정밀 시비를 위한 소구획 경작지내의 가변적 시비처리량 결정)

  • 조성인;강인성;최상현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.241-250
    • /
    • 2000
  • The feasibility of precision fertilizing for small size fields was studied by determining fertilizing amount of nitrogenous and calcareous to a cite specific region. A detailed soil survey at three experimental fields of $672m^2$, $300m^2$ and $140m^2$ revealed a considerable spatial variation of the pH and organic matter(OM) levels. Soil organic matter was measured using Walkley-Black method and soil pH was measured with a pH sensor. Soil sample was obtained by Grid Node Sampling Method. The soil sampling depth was 10∼20 cm from the soil surface. To display soil nutrient variation, a soil map was made using Geographic Information System (GIS) software. In soil mapping, soil data between nodes was interpolated using Inverse Distance Weighting (IDW) method. The variation was about 1∼1.8 in pH value and 1.4∼7% in OM content. Fertilizing Amount of nitrogenous and calcareous was determined by th fertilizing equation which was proposed by National Institute of Agricultural Science and Technology(NIAST). The variation of fertilizing amount was about 3∼11 kg/10a in nitrogenous and 70∼140 kg/10a in calcareous. The results showed a feasibility of precision fertilizing for small size fields.

  • PDF

Direct Shear Test of Undisturbed Weathered Residual Soils (불교란 풍화잔적토의 직접전단시험)

  • 오세붕;이영휘;정종혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.423-430
    • /
    • 1999
  • A weathered residual soil is a soil-like material derived from the in situ weathering and decomposition of rock which has not been transported from its original location. Undisturbed sampling of residual soils is extremely difficult, which has an important effect on investigating the strength and compression characteristics. Thus, a special undisturbed sampling device (direct shear box with shoe) was developed and undisturbed samples were successfully obtained for direct shear tests, Direct shear testing was conducted under unsoaked and soaked condition. As a result, the shear strength of soaked samples was less than that of unsoaked samples, and it was verified that direct shearing of undisturbed samples can evaluate reasonably the shear strength and the slope stability.

  • PDF

A New Development of Large Diameter Sampler and Its Applicability (대구경 Sampler의 개발 및 적용성에 관한 연구)

  • 한영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.331-336
    • /
    • 1999
  • A great deal of attention has been given in recent years to large diameter specimen for evaluation of soft soil characteristics, and many studies and developments of the apparatus for obtaining large diameter undisturbed soil samples are in progress attempting to minimize the disturbance of samples for precise strength and consolidation tests in the laboratory. This paper introduces a new large diameter sampler(over 300mm diameter), which can take prefectly undisturbed sampling at any depths applying a new sampling technique. By comparing the results of consolidation tests it is shown that the samples obtained by this new apparatus are of a superior quality to that of samples obtained by conventional sampler(Nx, 75mm dia.) at the same depths.

A Study on BTEX Concentration of Soil's Network in Seoul (서울의 토양측정망중 BTEX 농도 조사에 관한 연구)

  • 김광래;이재영;박찬구;엄석원
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.45-53
    • /
    • 1999
  • The soil samples were measured at 90 sites of Soil's Network In 1997~1998 which was established for the investigation of soil contamination in Seoul. This study was more focused to measure and analyze for BTEX(Benzene, Toluene, Ethylbenzene and Xylene) concentration in the Soil Network. Also, the samples were analyzed by Purge & Trap method. As a result, the BTEX were detected at all sampling sites in Seoul. The Min. Max and Mean BTEX concentration were respectively 0.047mg/kg, 2.618mg/kg and 0.437mg/kg in 1998. The concentration of the BTEX detected at all sampling sites was lower than that of the intervention standards(at industrial areas) of Soil Preservation Act.

  • PDF