• 제목/요약/키워드: Soil regulation

검색결과 177건 처리시간 0.029초

잔골재 중 토분이 저강도 모르타르의 기초적 특성에 미치는 영향 (The Effect of Soil on the Fundamental Properties of Low Strength Mortar in Fine Aggregate)

  • 신세준;이제현;박경택;박민용;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.155-156
    • /
    • 2019
  • Recently, the use of selective crushed aggregates is increasing due to the supply and demand shortage of aggregates. In the case of selective crushed aggregates, aggregates are produced using soil, rocks, etc., mainly generated at construction sites as raw materials. As a result, the quality of the raw material may not be uniform and may contain a large amount of soil. In the case of using such a bad aggregate shortens the life of the structure, there is a fear that adversely affect the overall performance, such as the strength and durability of the concrete. Therefore, this study analyzes the effect of aggregate soil on mortar in the low-strength mortar and ultimately proposes the regulation value of clay content in the soil content of crushed aggregates such as crushed aggregates.

  • PDF

지속농업을 위한 생물비료로서의 유용세균관련 식물검정 연구 개관 (Research Trends on Plant Associated Beneficial Bacteria as Biofertilizers for Sustainable Agriculture: An Overview)

  • 사동민
    • 한국토양비료학회지
    • /
    • 제42권Spc호
    • /
    • pp.20-28
    • /
    • 2009
  • 생물비료는 아직도 한국에서는 생소한 용어다. 한국에서 생물비료라 함은 식물추출액, 퇴비류-다양한 형태의 미생물 혼합제 등으로 인식되고 있다. 그러나 최근에는 식물영양요소의 흡수나 이용도를 증진시키는 토양미생물 사용으로 언급하기도 한다. 본 개관은 식물성장을 증진시키는 것으로 알려진 PGPR 서로 다른 기작과 실질적 역할에 대하여 검토하였다.

Brassinosteroids-mediated regulation of ABI3 is involved in high-temperature induced early flowering in plants

  • Hong, Jeongeui;Sung, Jwakyung;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제45권2호
    • /
    • pp.83-89
    • /
    • 2018
  • The interplay of plant hormones is one of the essential mechanisms for plant growth and development. A recent study reported that Brassinosteroids (BR) and ABSCISIC ACID (ABA) interact antagonistically in early seedling developments through the BR-mediated epigenetic repression of ABSCISIC ACID-INSENSITIVE 3 (ABI3). However, the other physiological roles of the BR-mediated regulation of ABI3 and ABA responses beyond early seedling developments remain largely unknown. Here, we showed that the activation of BR signaling by high temperatures promotes flowering time through the suppression of ABI3 expressions. Elevated ambient temperature induced early flowering in wild type Col-0 plants, but not in BR-defective bri1-116 mutant plants. Conversely, a hyper BR biosynthetic dwf4-D mutant displayed more sensitive thermomorphic long shoot elongation and early flowering. Both expression patterns and physiological responses supported the biological roles of ABI3 in the regulation of floral transition and reproduction under high temperature conditions. Finally, we confirmed that the lowered expressions of the transcript and protein levels of ABI3 brought on by elevated temperature were correlated with warmth-induced early flowering phenotypes. In conclusion, our data suggest that the BR- and warmth-mediated regulation of ABI3 are important in thermomorphic reproductive phase transitions in plants.

유기작물재배의 이론 및 핵심기술 -독일을 중심으로- (Principles and Skills of Organic Crop Production with special regards to Germany)

  • 손상목
    • 한국유기농업학회지
    • /
    • 제9권4호
    • /
    • pp.71-93
    • /
    • 2001
  • Within the paper, an overview of organic farming in Europe countries is given and the Principle and skills of organic agriculture is shortly reported with special regard to Germany. The overview information on European organic forming is covered such as \circled1 development of organic farming, \circled2organic farming organizations, \circled3standards and certification, \circled4implementation of EU council regulation, \circled5state support, \circled6implementation of Agenda 2000, \circled7training and education, \circled8advisory service and research situation. In the paper the principle and skills for organic farming which are practiced actually in the German organic farms is also reported. How to maintain and increase the fertility and microbiological activity of the soil by \circled1cultivation of legumes, green manures or deep-rooting crops in multi-annual rotation system, \circled2incorporation in the soil organic material, by-products from livestock farming is one of the major principle to organic crop production. Pest and diseases and weeds are controlled by any one, or a combination of the following measure ; \circled1choice of appropriate species and varieties, \circled2appropriate rotation programs, \circled3mechanical cultivation, \circled4protection of natural enemies of pests through provision of favourable habitat and ecological buffer zone, \circled5diversified ecosystems, \circled6flame weeding, \circled7natural enemies, \circled8bio-dynamic preparations, \circled9mulching and mowing, \circled10grazing of animals, ⑪mechanical controls, ⑫steam sterilization.

  • PDF

동전기 기법과 Zeolite를 이용한 중금속 오염토의 고정화에 관한 연구

  • 김종윤;김기년;김병일;김수삼
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.195-198
    • /
    • 2004
  • This study applied EK method to remediate contaminated soil by heavy metal(Pb), tried to increase the efficiency of remediation using zeolite as enhanced EK remediation method to overcome the limit of traditional EK remediation method. Adsorption tests on Pb were conducted to apply the EK extraction and test conditions which contained the electrode reversal, operating time were established. After tests, lead-ions were transported into the specific position of zeolite by EK phenomena, then the immobilization of lead-ions at zeolite was developed. Based on these tests, the efficiency of remediation is different with its test conditions. In addition, the efficiency of remediation was improved dramatically by adding zeolite without electrode reversal and satisfied TCLP regulation of EPA in USA through the whole sample range. Finally, absorption and immobilization capacity of zeolite were proved its excellence and confirmed the possibility of application as enhanced EK remediation method.

  • PDF

토양으로부터 genomic DNA의 효과적인 분리 (Improved Genomic DNA Isolation from Soil)

  • 강주형;김보혜;이선이;김영진;이준원;박영민;안순철
    • 생명과학회지
    • /
    • 제15권6호
    • /
    • pp.851-856
    • /
    • 2005
  • Although valuable microbes have been isolated from the soil for the various productions of useful components, the microbes which can be cultivated in the laboratory are only $0.1-1\%$ of all microbes. To solve this problem, the study has recently been tried for making the valuable components from the environment by directly separating unculturable micrbial DNA in the soil. But it is known that humic acid originated from the soil interrupts various restriction enzymes and molecular biological process. Thus, in order to prevent these problems, this study modified the method separated soil DNA with phenol, CTAB and PEG. In order to compare the degree of purity for each DNA and the molecular biological application process, $A_{260}/A_{280}$ ratio, restriction enzymes, and PCR were performed. In case of DNA by the modified method, total yield of DNA was lower but $A_{260}/A_{280}$ ratio was higher than the previously reported methods. It was confirmed that the degree of purity is improved by the modified method. But it was not cut off by all kinds of tested restriction enzymes because of the operation of a very small amount of interrupting substances. When PCR was operated with each diluted DNA in different concentrations and GAPDH primer, the DNA by the modified method could be processed for PCR in the concentration of 100 times higher than by the previously reported separation method. Therefore, this experiment can find out the possibility of utilization for the unknown substances by effectively removing the harmful materials including humic acid and help establishing metagenomic DNA library from the soil DNA having the high degree of purity.

Research Trends of Ecotoxicity of Nanoparticles in Soil Environment

  • Lee, Woo-Mi;Kim, Shin-Woong;Kwak, Jin-Il;Nam, Sun-Hwa;Shin, Yu-Jin;An, Youn-Joo
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.253-259
    • /
    • 2010
  • We are consistently being exposed to nanomaterials in direct and/or indirect route as they are used in almost all the sectors in our life. Nations across the worlds are now trying to put global regulation policy on nanomaterials. Sometimes, they are reported to be more toxic than the corresponding ion and micromaterials. Therefore, safety research of nanoparticles has huge implications on a national economics. In this study, we evaluated and analyzed the research trend of ecotoxicity of nanoparticles in soil environment. Test species include terrestrial plants, earthworms, and soil nematode. Soil enzyme activities were also discussed. We found that the results of nanotoxicity studies were affected by many factors such as physicochemical properties, size, dispersion method and test medium of nanoparticle, which should be considered when conducting toxicity researches. In particular, more researches on the effect of physicochemical properties and fate of nanoparticles on toxicity effect should be conducted consistently.

Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.)

  • Hu, Haiyan;He, Jie;Zhao, Junjie;Ou, Xingqi;Li, Hongmin;Ru, Zhengang
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1199-1211
    • /
    • 2018
  • Soil acidification is one of major problems limiting crop growth and especially becoming increasingly serious in China owing to excessive use of nitrogen fertilizer. Only the STOP1 of Arabidopsis was identified clearly sensitive to proton rhizotoxicity and the molecular mechanism for proton toxicity tolerance of plants is still poorly understood. The main objective of this study was to investigate the transcriptomic change in plants under the low pH stress. The low pH as a single factor was employed to induce the response of the wheat seedling roots. Wheat cDNA microarray was used to identify differentially expressed genes (DEGs). A total of 1057 DEGs were identified, of which 761 genes were up-regulated and 296 were down-regulated. The greater percentage of up-regulated genes involved in developmental processes, immune system processes, multi-organism processes, positive regulation of biological processes and metabolic processes of the biological processes. The more proportion of down-regulation genes belong to the molecular function category including transporter activity, antioxidant activity and molecular transducer activity and to the extracellular region of the cellular components category. Moreover, most genes among 41 genes involved in ion binding, 17 WAKY transcription factor genes and 17 genes related to transport activity were up-regulated. KEGG analysis showed that the jasmonate signal transduction and flavonoid biosynthesis might play important roles in response to the low pH stress in wheat seedling roots. Based on the data, it is can be deduced that WRKY transcription factors might play a critical role in the transcriptional regulation, and the alkalifying of the rhizosphere might be the earliest response process to low pH stress in wheat seedling roots. These results provide a basis to reveal the molecular mechanism of proton toxicity tolerance in plants.

규제기준 변화에 다른 PCBs 인체 및 생태 위해성 평가 (Health and Ecological Risk Assessment of PCBs-exposure by Regulation Guideline Change)

  • 임영욱;양지연;정종수;이용진;김진영;이청수;고성준;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권1호
    • /
    • pp.53-62
    • /
    • 2008
  • In the present study, the concentration levels of polychlorinated biphenyls (or PCBs) in the environments in Korea are estimated based on some measured data in Korea, in comparison with the data from the other countries. Even though PCBs were banned as electrical fluids in 1970s in Korea, PCBs are still detected in the environment. PCBs levels in Korea are greatly lower than those in other countries, which are gradually decreased as well. However, the measured data are not sufficient in both numbers and quality, to estimate the average PCBs levels in Korea. The regulation limit on polychlorinated biphenyls (or PCBs) is 2mg/kg (ppm), which is too low compared to 50 ppm of many other countries including U.S. With this strict regulation, there are many problems expected, for example, in the analysis of PCBs in the transformers using in the field as well as the safe treatment of PCBs. The risk assessment on the PCBs in the environment is surely necessary prior to the change in the limit. Also the PCBs concentration monitoring in the environmental media (i.e. air, water, soil and sediment) and exposure assessment will be essential for the accurate risk assessment. If the PCB-waste guideline maintain as 2 ppm after 10 years, the excess cancer risk of PCBs exposure by ambient air, drinking water and soil was $10^{-8}$. But if the guideline mitigate as 50 ppm after 10 years, the cancer risk was increased by $10^{-7}$. The ecological risk quotient by regulation change was not exceed '1'.

Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens

  • Lu, Ping;Jiang, Ke;Hao, Ya-Qiao;Chu, Wan-Ying;Xu, Yu-Dong;Yang, Jia-Yao;Chen, Jia-Le;Zeng, Guo-Hong;Gu, Zhou-Hang;Zhao, Hong-Xin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1231-1240
    • /
    • 2021
  • Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.