• Title/Summary/Keyword: Soil reclamation

Search Result 400, Processing Time 0.022 seconds

Remediation of Heavy Metal Polluted Agricultural Field with Spent Mushroom Media

  • Chang, Hee Je;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Environmental pollution from abandoned metal mines has been awarded as serious problem and many techniques have been applied to remediate pollutants. Main objective of this research was to evaluate efficiency of heavy metal sorption capacity of spent mushroom media (SMM) in aqueous and soil matrix. Laboratory batch experiment was conducted and 4 different heavy metals (Cd, Pb, Cu, Zn) were evaluated. In aqueous phase, all 4 heavy metals showed high reduction efficiency ranged from 60-99% and Pb showed the highest sorption efficiency. In case of soil phase, much lower sorption efficiency was observed compared to aqueous phase. The highest reduction efficiency was observed in Cd (average of 38%). With scanning electron microscopy energy dispersive detector (SED-EDS) analysis, we confirmed sorption of heavy metals at the surface of SMM. Overall, SMM can be used as sorption materials for heavy metals in both aqueous and soil matrix and more research should be conducted to increase sorption efficiency of SMM in soil.

A Study on Estimation of Loss Rate of Hydraulic Fills (준설토의 유실율 평가방법에 관한 연구)

  • 김홍택;노종구;김석열;강인규;김승욱;박재억
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.185-192
    • /
    • 2000
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, practice each three method in order to suggest method of determining the loss rate of the dredged fills. The first sieve and hydrometer analysis were performed with the soil samples obtained before and after dredging and then apply theory of particle breakage, the second compare with the volume of dredged soil between at the dredging area and the target pond and the last compare with weight of dredged soil between before and after dredging at the dredging area and in the target pond for estimating the amount of soil particles residual at the reclaimed area and the loss of soil particles passed through the weir. In addition to compare with the loss ratio between as using Marsal's modified theory of particle breakage and measured weight and volume in the field.

  • PDF

A Study On Point Storm Energy Influencing to the Soil Erosion (토양유실에 미치는 각지방별 강우 에너지 분석)

  • 박성우
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.47-54
    • /
    • 1976
  • The research are intend to establish the design criteria for slopy upland reclamation, with protecting the loss of top-soil, Recently undertaken reclamation works for developing the slopy upland of 310,000 ha. have faced to the vagueness of their deign criteria. One of the most influencing factors to cause the soil erosion depends basically upon the kinematic energy of rainfall, which is developed by the rainfall intensity. Their relationship between the rainfall and its kinematic energy is expressed as EK=916+ 331 log I. Consequently, the study was carried out through analyzing each intensity of the independant rainfall through out the 14 rainfall stations. About 10,000 single storms self recording chart of more than 10mm of rainfall amout were collected and analyzed by computer. The results of research show their kinematic energy for the 14 stations, and will be available for the establishment of the design oriteria.

  • PDF

A Study on the Shallow Improvement Method for Dredged Clay Fills by the Model Tests (모형시험에 의한 준설점토지반의 표층안정기법 연구)

  • 김석열;노종구;이영철;권수영;김승욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.569-576
    • /
    • 2002
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, to compare the soil and sand-mat mixed method with sand-air jet method for shallow improvement of hydraulic fills at southern seashore, the model tests were performed. Through the model test results, the behavior of surface as disturbance of desiccation crust is analyzed.

  • PDF

Characteristics of Agricultural Paddy Soil Contaminated by Lead after Bench-scale In-situ Washing with FeCl3 (납 오염 논토양의 원위치 세척을 위한 FeCl3의 Bench-scale 적용성 평가: 세척전후 토양 특성변화)

  • Koh, Il-Ha;Kim, Gi Suk;Chang, Yoon-Young;Yang, Jae-Kyu;Moon, Deok Hyun;Choi, Yulim;Ko, Myoung-Soo;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.18-26
    • /
    • 2017
  • In a previous study, we assessed the feasibility of ferric chloride ($FeCl_3$) as a washing agent in bench-scale in-situ soil washing to remove Pb from agricultural paddy soil. Herein is a subsequent study to evaluate variations in soil properties after $FeCl_3$ soil washing in terms of fractionation and bioavailability of Pb and chemical properties of the soil. After soil washing, the soil pH decreased from 4.8 to 2.6 and the exchangeable fractions of Pb in the soil increased from 12 mg/kg to 15 mg/kg. Variations in the Pb fractionation of the soil increased Pb bioavailability by almost three-fold; however,the base saturation decreased by 75%. The concentrations of total nitrogen and available phosphate were similar before and after soil washing. The available silicate concentration significantly increased after soil washing but was two times lower than that of soil washed with HCl, which is widely used as a washing agent. This indicates that $FeCl_3$ can be an acceptable washing agent that protects the soil clay structure. The results suggest that soil amendment, such as liming, is needed to recover soil pH, reduce mobility of Pb, and provide exchangeable bases of Ca, Mg, and K as essential elements for the healthy growth of rice plants in reused soil that has been washed.

Decision of Available Soil Depth Based on Physical and Hydraulic Properties of Soils for Landscape Vegetation in Incheon International Airport

  • Jung, Yeong-Sang;Lee, Hyun-Il;Jung, Mun-Ho;Lee, Jeong-Ho;Kim, Jeong-Tae;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.522-527
    • /
    • 2015
  • Decision of available soil depth based on soil physical and hydraulic properties for the $3^{rd}$ Landscape Vegetation Project in the Incheon International Airport was attempted. The soil samples were collected from the 8 sites at different depths, 0-20 and 20-60cm, for the three project fields, A, B, and C area. Physical and chemical properties including particle size distribution, organic matter content and electrical conductivity were analyzed. Hydrological properties including bulk density and water holding capacity at different water potential, -6 kPa, -10 kPa, -33 kPa, and -1500 kPa were calculated by SPAW model of Saxton and Rawls (2006), and air entry value was calculated by Campbell model (1985). Based on physical and hydrological limitation, feasibility and design criteria of soil depth for vegetation and landfill were recommended. Since the soil salinity of the soil in area A area was $19.18dS\;m^{-1}$ in top soil and $22.27dS\;m^{-1}$ in deep soil, respectively, landscape vegetation without amendment would not be possible on this area. Available soil depth required for vegetation was 2.51 m that would secure root zone water holding capacity, capillary fringe, and porosity. Available soil depth required for landscape vegetation of the B area soil was 1.51 m including capillary fringe 0.14 m and available depth for 10% porosity 1.35 m. The soils in this area were feasible for landscape vegetation. The soil in area C was feasible for bottom fill purpose only due to low water holding capacity.

Vegetation Distribution of Intertidal Zone and Estuary Area on Anseo Port in Saemangeum Reclamation Zone (새만금 간척지구 내 안서 포구 일대의 식생 분포에 대한 연구)

  • Kim, Eun-Kyu;Jung, Yeong-Sang;Jeong, Hyeung-Geun;Joo, Young-K.;Chun, So-Ul
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.6
    • /
    • pp.494-505
    • /
    • 2007
  • This study was carried out targeting the intertidal zone and estuary area of Anseo port in Saemangeum reclamation zone from 2003 to 2004, to analyze how reclamation affects the distribution of vegetation and soil properties. The plant growing in these survey areas was all halophytes: the vegetation on the intertidal zone consisted of simply 3 species of halophyte, and vegetation on the high tide zone and estuary area consisted of 9 and 8 species respectively, showing a more varied aspect than the intertidal zone. As for the plant species distribution, the predominant species for the intertidal zone were Suaeda maritima, Limonium tetragonum and Suaeda japonica; the predominant species for the slope zone of estuary were Suaeda maritima, Limonium tetragonum and Aster tripolium, and the predominant species for the inundation zone of estuary were Kochia scoparia var. littorea. At the analysis result of soil chemical properties, it was discovered that the appearance of the plant species was made at some spots on the intertidal zone whose electrical conductivity(EC), $Na^+,\;and\;Cl^-$ were relatively lower. EC of between the plant species was similar in the same zone, however EC was distinctively different between the same species in the different zone. Our study found out that whether the occurrence of the plant species is possible or not was decided by the difference in soil properties. This study results suggest that the distribution of vegetation is influenced by soil environment in that the appearance of the plant species on the intertidal zone and estuary area is differentiated by soil texture and soil chemical properties.

Stabilization of Arsenic in Soil around the Abandoned Coal-Mine Using Mine Sludge Pellets (광산슬러지 펠렛을 이용한 폐석탄광 주변 토양 내 비소 안정화 연구)

  • Ko, Myoung-Soo;Ji, Won-Hyun;Kim, Young-Gwang;Park, Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The purpose of this study was to assess the applicability of acid mine drainage sludge (AMDS) pellets for the arsenic (As) stabilization and to suggest an evaluation method for arsenic stabilization efficiency in soil around abandoned coal mines. The soil samples were collected from the agricultural field around Ham-Tae, Dong-Won, Dong-Hae, and Ok-Dong coal mine. The As concentration in soil was exceeding the criteria of soil pollution level, except for Ham-Tae coal mine. The AMDS pellets are more appropriate to use by reducing dust occurrence during the transport and application process than AMDS powder. In addition, AMDS pellets were maintained the As stabilization efficiency. The application of AMDS pellets for the As stabilization in soil was assessed by column experiments. The AMDS pellets were more effective than limestone and steel slag, which used as the conventional additives for the stabilization process. The As extraction by $0.43M\;HNO_3$ or $1M\;NaH_2PO_4$ solution were appropriate evaluation methods for evaluation of As stabilization efficiency in the soil.

Numerical Analysis of Utility Tunnel Movement under Reclamation Ground (매립지반 지하공동구의 수평이동원인에 대한 수치해석적 분석)

  • Yoon, Woo Hyun;Hwang, Chulsung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.35-40
    • /
    • 2013
  • Recently reclamation land is largely developed to utilize the land according to economic growth. The soil of landfill is soft, low shear strength, which makes it difficult to use the equipment. A large movement is occurred on the utility tunnel under construction. The inclined land with high water level and underground facilities are widely distributed and the excess pore water pressure may occur under construction similarly to this study. Some different conditions are made to design result, such as 4m of soil piling near the construction area, heavy rainfall during 2nd excavation that may cause flow liquefaction. To analyze the cause of transverse lateral movement, Three dimensional analysis are performed to four load cases, which is original design condition, flow liquefaction by heavy rainfall, unsymmetric lateral soil pressure, and both of them simultaneously. Ten steps of full construction stage, 1st excavation for utility tunnel, construction of utility tunnel, 1st refill, piling soil from 1m to 4 m, 2nd excavation for drainage culvert, liquefaction around the utility tunnel, construction of drainage culvert and 2nd refill, are take into account to investigate the cause of movement.