• Title/Summary/Keyword: Soil reactor

Search Result 141, Processing Time 0.029 seconds

Investigation on Vanishing Possibility of Food waste Using Fermentation soil (발효토에 의한 음식물쓰레기 소멸화 가능성의 검토)

  • Phae, Chae-gun;Joo, Hung-soo;Park, Jung-soo;Choi, Heon-su;Jang, Ki-hun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.138-146
    • /
    • 2000
  • This study was performed to determine the best fermentation soil in vanishing composting of individual residence garbage. At the result, temperature, weight, water content, volatile solid were reduced gradually by reaction of microorganism in the reactors after food was inserted for 9 days. The vanishing possibility was observed in all reactors. The best reactor was F and 4 that seeded microorganisms which were provided at S University. In addition it was possible to shorten cycle of putting in food waste. Inactivated reactors will be bad because of increased water content for long reaction time. Sodium chloride was accumulated and not vanished as time passed. But reactor was not insulated, the activities of microorganism in the reactor were affected highly by cold weather(about less than $12^{\circ}C$). When the study was extended to find out the feasibility of application, the retention time could be shortened to 3days form 9 days, when the microorganism reactor that used the fermentation soil seeded microorganisms which were provided at S University was maintained about $20^{\circ}C$.

  • PDF

Degradation of Tetrachloroethylene (PCE) by a Dechlorinating Enrichment Culture Fixed in an Anaerobic Reactor (탈염소화 미생물 부착 혐기성 고정막 반응기에 의한 테트라클로로에틸렌(PCE)의 분해)

  • Lee Tae Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.49-55
    • /
    • 2004
  • A soil enrichment LYF-1 culture from a contaminated site, which could reductively dechlorinate 900 $\mu$M (ca. 150 mg/L) of tetrachloroethylene (PCE) stoichimetrically into cis-1,2-dichloroethylene (cis-DCE), was established and characterized. The enrichment culture can use yeast extract, peptone, formate, acetate, lactate, pyruvate, citrate, succinate, glucose, sucrose, and ethanol as electron donors for dechlorination of PCE. Addition of NO$_2$$^{[-10]}$ and NO$_3$$^{[-10]}$ as alternative electron acceptors showed complete inhibition of PCE dechlorination, but S$_2$O$_3$$^{-2}$ , SO$_3$$^{-2}$ and SO$_4$$^{-2}$ had no significant effect on PCE dechlorination. The enrichment culture was attached to ceramic media in an anaerobic fixed-bed reactor. The fixed-bed reactor showed more than 99% of PCE degradation in the range of PCE loading rate of 0.13-0.78 $\mu$moles/L/hr. The major end product of PCE dechlorination was cis-DCE.

Reduction of High Explosives (HMX, RDX, and TNT) Using Micro- and Nano- Size Zero Valent Iron: Comparison of Kinetic Constants and Intermediates Behavior (마이크로와 나노 철을 이용한 고성능 화약물질(HMX, RDX 및 TNT)의 환원처리: 중간산물의 거동과 도역학 상수의 비교)

  • Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.83-91
    • /
    • 2006
  • Reduction kinetics and the behaviour of intermediate of three high explosives (HMX, RDX, and TNT) were studies in batch reactors using nano- or micro- size zero valent iron(nZVI or mZVI) as reducing agent. The kinetic constants normalized by the mass of iron ($k_M$) or by the surface area ($k_{SA}$) were measured and compared along with the changes in the concentrations of intermediates. Results showed that $k_M$ and $k_{SA}$ values were not suitable to fully explain the behaviour of mother compounds and reduced intermediates in the batch reactor. The concentrations of initial explosives degradation products, such as nitroso-RDXs, nitroso-HMXs, and hydroxylamino-TNTs, were higher in mZVI treated reactor than in nZVI treated reactor, whereas more reduced polar intermediates such as TAT were accumulated in the nZVI reactor. Therefore, a new parameter, which accounted for the intermediates reduction, needs to be developed.

The Characteristics of Bioremediation for VOCs in Soil Column (VOCs 처리를 위한 미생물의 토양복원화 특성)

  • 손종렬;장명배;조광명
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.1
    • /
    • pp.52-56
    • /
    • 2002
  • The study was carried out to evaluate the characteristics of biodegradation by Pseudomonas putida G7 in soil column. The reactor system was used to investigate mass transfer of VOCs as Toluene in a column of unsaturated soil. Determination of the fate of VOCs in unsaturated soil is necessary to evaluate the feasibility of natural attenuation as a VOCs remediation strategy. The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOC transport, microbial activity, and sorptive interactions in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOCs transport that is induced in engineered remediation processes such as vapor extraction was not considered. It can be concluded that the coefficient for gas liquid mass-transfer was found to be a key parameter controlling the ability of bacteria to VOCs. Finally, it appeared that bioremediation technology of VOCs which are difficult to be decomposed by chemical methods.

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method. (부분구조법에 의한 지반-구조물 상호작용 시스템의 지진응답 매재변수 해석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.117-125
    • /
    • 1997
  • ABSTRACT This paper presents results of parametric studies of the seismic responses of a reactor containment structure on layered base soil. Among the numerous parameters, this study concentrates on the effects of embedment of structure to the base soil, thickness of the soil layers, stiffness of the base soil, and the definition point of the input motion. For the analysis, a substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of the SSI system computed from the ratio of dissipated energy to the strain energy for each mode. From the study results, the sensitives of each parameter on the earthquake responses have been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

Deodorization of H2S, CH3SH in Soil Filter Reactors Packed with Montmorillonites, Rice Hulls and Thickening-activated Sludge (Montmorillonites, 왕겨 및 농축활성슬러지를 충진한 토양상에서의 H2S, CH3SH의 제거)

  • Kim, Hwan-Gi;Park, Chan-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.43-52
    • /
    • 2000
  • Deodorization characteristics and removal rate of sulfur-containing odor have been investigated in the soil filter reactors packed with montmorillonites (Mont.), rice hulls(Rh.), and thickening-activated sludge(Ts.). And variation of pH and $SO_4{^{2-}}$ with the removal of malodorous sulfur compounds have been investigated together. As compared removal rate of montmorillonites between wet and dry condition for sulfur compounds through batch test, it showed that wet condition was better than dry one; removal ratio, as wet/dry, was $H_2S$ of 1.2 and $CH_3SH$ of 1.9, and decrease of pH and increase of $SO_4{^{2-}}$ concentration in the wet condition also showed to be larger than in dry condition. In continuous test for biological deodorization experiment, removal rate of sulfur compounds in reactor packed with Mont., Rh. and Ts, was more than 98 %, and the variation of static pressure was maintained stably under condition of SV $150h^{-1}$, LV 4.2 mm/sec and SV $200h^{-1}$, LV 5.6 mm/sec, and in reactor packed with Mont. and Rh., $H_2S$ was 76.4 % to 87.2 % and $CH_3SH$ was 87.8 % to 93.3 % under the same condition. From above results, it ascertained that it can obtain the high deodorization efficiency by inoculating thickening-activated sludge in soil filter using montmorillonites.

  • PDF

The Effect of Soil Characters on Removal of Odorous Gases during Carcasses Degradation with Efficient Microorganisms (토질 특성에 따른 가축사체 매몰지의 악취 저감 연구)

  • Kim, Hyun-Sook;Park, Sujung;Jung, Weon Hwa;Srinivasan, Sathiyaraj;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.277-285
    • /
    • 2014
  • The usage of efficient microorganism (EM) is increasing in concern for server purposes including odor removal during carcasses degradation. In this study, we have studied the type of soil and its effect on efficient microorganisms for the removal of odorous gases during buried carcasses degradation in lab-scale reactor. The carcasses are buried in the reactor with various soil types such as normal soil, 20% sandy and 20% clay soil with the efficient microorganism KEM. The efficient microorganisms KEM have the ability to stabilize the degradation of carcasses of the burial site. We have focused on the analysis of odorous gases such tri-methylamine (TMA), hydrogen sulfide ($H_2S$), methyl mercaptan (MM), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), carbon dioxide ($CO_2$), and methane ($CH_4$) along with the changes of microbial community changed during complete degradation of buried carcasses for a year. The results suggested that the 20% sandy soil contain lesser level of $H_2S$ and MM (0.09 and 0.35 mg) but 20% clay has higher nitrogen compound removing effect and leave only less amount of ammonia and TMA (0.31 and 2.06 mg). The 20% sandy soil also has the ability to breakdown the carcasses more quality compared with other types of soil. Based on the data obtained in this study suggesting that, the use of 20% sandy soil can effectively control sulfur compounds whereas 20% clay soil controls nitrogen compounds in the buried soil. Depending on the type of the soil, the dominant of microbial communities and the distribution was change.

Kinetics of 2,4,6-Trinitrotoluene reduction by zero valent iron (금속 철을 이용한 TNT의 환원시의 동역학 산정)

  • 배범한
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.62-63
    • /
    • 1999
  • Reduction 2,4,6-Trinitrotoluene by zero valent iron was studied in a batch reactor under anoxic conditions. Results showed that the removal of TNT was a pseudo-first order and the rate was dependent on the available metal surface area. Final product, presumably triaminotoluene, accumulated in the solution as well as on the metal surface. However, little amounts of aminodinitrotoluenes were detected. Therefore, it is postulated that the reduction of nitro group occurs simultaneously in all three position.

  • PDF

An Analysis of the Ageing Effect on the Removal of Cesium and Cobalt from Radioactive Soil by the Electrokinetic Method

  • Kim Gye-Nam;Oh Won-Zin;Won Hui-Zun;Jung Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.304-315
    • /
    • 2004
  • The ageing effects of radionuclides in radioactive soil on remediation using the electrokinetic method were analyzed. Comparative experiments were conducted for the reactive soil around a TRIGA research? reactor contaminated with $^{137}Cs\;and\;^{60}Co$ for 15 years and the non-reactive soil that was intentionally contaminated with $Cs^+\;and\;Co^{2+}$ for 3 days. It was observed that because of an aging effect on $^{137}Cs$, the efficiency of removing it decreased. $H_{2}SO_4$ used as an additive to increase the removal efficiency showed a higher removal capability than other chemicals for both $^{137}Cs\;and\;^{60}Co$. The efficiency of removing radionuclides from the radioactive soil in the column was proportional to the capability of the added chemical to extract radionuclides. It took 10 days to achieve a $54\%$ removal of $^{137}Cs$ and a $97\%$ removal of $^{60}Co$ from the soil. The volume of the soil wastewater discharged from the soil column by the electrokinetic method was $20\%$ below that for soil washing.