• 제목/요약/키워드: Soil radon

검색결과 83건 처리시간 0.025초

Measurement and Spatial Analysis of Uranium-238 and Radon-222 of Soil in Seoul

  • Oh, Dal-Young;Shin, Kyu-Jin;Jeon, Jae-Sik
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 2017
  • Identification of radon in soil provides information on the areas at risk for high radon exposure. In this study, we measured uranium-238 and radon-222 concentrations in soil to assess their approximate levels in Seoul. A total of 246 soil samples were taken to analyze uranium with ICP-MS, and 120 measurements of radon in soil were conducted with an in-situ radon detector, Rad7 at a depth of 1-1.5 m. The data were statistically analyzed and mapped, layered with geological classification. The range of uranium in soil was from 0.0 to 8.5 mg/kg with a mean value of 2.2 mg/kg, and the range of radon in soil was from 1,887 to $87,320Bq/m^3$ with a mean value of $18,271Bq/m^3$. The geology had a distinctive relationship to the uranium and radon levels in soil, with the uranium and radon concentrations in soils overlying granite more than double those of soils overlying metamorphic rocks.

계절적 라돈농도 변화 및 토양기원 실내라돈과 토양내 라돈농도의 상관성 분석 -단독주택 사례연구- (Seasonal Radon Concentration and Correlation Analysis of Indoor Radon Originated from Soil and Soil Radon at Detached House)

  • 조주현;김영희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권5호
    • /
    • pp.105-111
    • /
    • 2017
  • In this study, the variation of indoor and soil radon concentrations were measured at a test bed (detached house), and correlation analysis was performed using linear regression. The results showed that the average concentration of indoor radon was increased by about 20% when the heater was operated in the house, but it was decreased by 15% when the ventilation system was on. In the changes of seasonal radon concentrations, soil and indoor radon concentrations in winter were higher than in summer. Statistical analysis showed a weak correlation between the soil radon and indoor radon, but the correlation (R=0.852, $R^2=0.726$) was relatively high at exhaust condition in the winter. It is difficult to extrapolate the results of the study to the general cases because radon distribution is highly site-specific, but the result of this study could be used as a reference for radon management and reduction of detached house in the future investigations.

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Assessment of radon potential in the areas covered with granite and gneiss in Korea

  • Je Hyun-Kuk;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.501-503
    • /
    • 2003
  • Soil-gas radon level and other atmospheric factors have been measured at residual soil profiles that overlie granite bedrock which consists of major geology in Korea for 6 months from November, 2000 to April, 2001. Seasonal variations of soil-gas radon concentration are generally of greater magnitude than day-to-day fluctuations. The highest radon concentrations of 5,131 pCi/L measured during winter season and the lowest radon concentrations of 107 pCi/L during spring season. Two study areas, Bongcheon-dong(granite bedrock) and Seongnam-Yongin(gneiss bedrock) were investigated to assess the radon potential according to their field survey and emanation tests. The mean values of radon decrease in sequentially from Suji-A(813 pCi/L)>Suji-B(757 pCi/L)>Bundang-B(691 pCi/L)>Bundang-A(643 pCi/L)>Bongcheon-dong(513 pCi/L). Estimated soil-gas radon potential using maximum radon emanation ratios of each study area decreases in the order of Bongcheondong(950 pCi/L)>Suji-B(524 pCi/L)>Bundang-A(437 pCi/)>Bundang-B(259 pCi/L)>Suji-A(230 pCi/L) areas. The values of indoor radon and its daughter product concentrations in Bongcheon-dong area show that indoor basement rooms in poor ventilation condition could be classified as extremely high radon risk location of more than 4 pCi/L Rn and 0.02 WL.

  • PDF

주거용 건축물의 실내 라돈농도 경감방안에 관한 연구(I) -Test Cell Study (A Study on Mitigation Methods of Indoor Radon Concentration in Residential Buildings(I) - Test Cell Study)

  • 차동원
    • KIEAE Journal
    • /
    • 제1권2호
    • /
    • pp.21-28
    • /
    • 2001
  • Naturally-ocurring short-lived decay products of radon gas in indoor air are the dominant source of ionizing radiation exposure to the general public. It is written in BEIR VI Report(l999l the radon progeny were identified as the second cause of lung cancer next to cigarette or 10 % to 14 %(15,400 to 21,800 persons p.a.) of all lung cancer deaths in USA. Indoor radon concentrations in houses typically result from radon gaining access to houses mainly from the underlying soil. In the States, they have "Indoor Radon Abatement Act" which was converted from "Toxic Substance Control Act" in 1988 to establish the national long-term goal that indoor air should be as free of radon as the ambient air outside of buildings. To review and study techniques for controlling radon, two test cells were constructed for a series of tests and are under measuring indoor and soil gas (underneath of floor slab)radon concentrations according to EPA's measurement protocol. In this paper, important theoretical studies are previewed and the following paper will explain the test results and confirm the theories reviewed to find out suitable coefficients. On the basis of test analysis, it will be described and evaluated various techniques that can be used to mitigate elevated indoor concentration of radon including the control of radon and its decay products.

  • PDF

부산광역시 일대의 토양 내 라돈 농도 변화 특성 (Characteristics of Radon Variability in Soils at Busan Area)

  • 김진섭;김선웅;이효민;최정윤;문기훈
    • 자원환경지질
    • /
    • 제45권3호
    • /
    • pp.277-294
    • /
    • 2012
  • 부산의 지역의 암석 종류에 따른 토양 내 라돈 농도의 시 공간적 변화 특성과 변화 요인에 대하여 연구하였다. 토양 내 라돈($^{222}Rn$)농도와 암석 및 토양의 모원소($^{226}Ra$,$^{228}Ra$ U, Th)의 농도를 부산지역 24개 지점에서 측정하였다. 모암과 토양 내 이들 모원소들의 분포와 거동 특징을 분석하고 라돈과의 상관성을 상세히 규명하였으며, 지형에 대한 영향도 평가하였다. 토양 내 라돈 농도 측정에는 두 가지 in-situ 방법(soil probe 방법과 지중매설튜브 방법)을 적용하여 측정의 정확성에 대하여 비교하였다. 토양 내 라돈의 공간적 분포는 모암의 암석 종류에 따른 U의 농도를 전반적으로 반영하여, 화산암에 비해 심성암에 높고, 산성암>중성암>염기성암 순으로 높은 변화양상을 보였다. 그러나 동일한 모암에서 유래된 토양내의 라돈 농도에서 큰 폭의 변화가 나타나며, 이는 라돈의 모원소인 U와 $^{226}Ra$의 암석과 토양에서의 현저한 방사능 비평형 결과이다. 따라서 토양 내 라돈 농도는 이들 모원소의 암석과 토양 내 농도와의 상관성은 매우 낮게 나타나며, 암석 내 농도에 비해 토양 내 농도와 더 높은 상관성을 보였다. Th과 $^{228}Ra$은 풍화작용과 토양 발달 특성에 따라 U와 지구화학적 거동 및 부하 특징을 달리하기 때문에, 동일한 모암에서 유래된 토양에서도 토양 특징에 따라 U와 현저히 다른 복잡한 농도 변화 양상을 나타내었다. 지형구배를 이루는 경사지의 동일 심도의 토양 내 라돈농도는 위치에 따라 차이를 나타내며, 모암을 같이하는 잔류토양(부산대 내 19개 지점)내에서는 소규모 지형 변화에 의해 토양 내 라돈 농도가 6.8~29.8Bq/L 범위로 변화하였다. 토양 내 라돈 농도는 토양 특성에 따라, 정반대의 계절적 변화 양상을 보인다. 지중매설튜브 방법이 soil probe 방법에 비해 더욱 정확히 토양 내 라돈농도를 측정할 수 있어, 토양 내 라돈의 시 공간적 변화 특성에 대한 분석에 매우 유용한 것으로 나타났다.

지구화학환경에서의 라돈농도분포와 라돈농도의 지배요인(사례연구) (Radon distribution in geochemical environment and controlling factors in Radon concentration(Case study))

  • 전효택
    • 지질공학
    • /
    • 제10권2호
    • /
    • pp.189-214
    • /
    • 2000
  • 기반암별로 구획화된 지역(서울대학교 관악캠퍼스, 경기도 가평, 충북 보은)에서의 사례연구결과, 화강암질 암석의 잔류토양에서 라돈농도가 상대적으로 높은 값을 나타냈다. 이는 기반암에 따른 우라늄의 지구화학적 분포의 차이가 1차적 원인으로 작용했기 때문이라 판단된다. 라돈의 발산율에 영향을 미치는 토양의 함수율과 우라늄-라듐간의 방사는평형도 토양가스 중 라돈농도를 지배하는 2차적 요인임이 실험에 의해 증명되었다. 서울대학교 관악캠퍼스 지역에서 선정한 40개의 실내공간에서 라돈 및 리돈후대핵종농도 분포를 조사한 결과, 지하실에 위치하면서 환기가 불량한 일부 실내공간에서 EPA의 라돈 기준치인 4pCi/L을 초과하는 농도를 나타냈다. 또한, 실내에서의 라돈농도와 비교한 결과, 일반적으로 양의 상관성을 보여, 토양가스가 실내라돈유입의 주 원임이 확인되었다. 단층이 위치한 경주 및 가평지역에서 단층선과의 거리에 따른 라돈농도분포를 조사한 결과, 일부 지역에서 단층구조의 영향으로 인해 라돈의 이동성이 증가하여, 해당 토양의 우라늄함량만으로는 설명할 수 없는 라돈이상치가 나타났다.

  • PDF

지리정보시스템(GIS)을 이용한 토양지질도 분포와 실내라돈 상관성 연구 : 화천 및 장수의 사례를 근거로 (The Research for Relationships between Concentration of Indoor Radon and Distribution of Soil Geological Map using GIS : Based on the Hwacheon and Jangsu Areas)

  • 권명희;이재원;김성미;이정섭;정준식;유주희;이규선;송석환
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.333-351
    • /
    • 2017
  • Objectives: This study examines the relationships between indoor radon concentrations and distribution from soil geological mapping in the Hwacheon and Jangsu areas. Methods: GIS and a pivot table were used for inquiries about indoor radon contents, soil characteristics, and geological differences. Results: The Hwacheon area was characterized by the presence of normal and reverse faults as a passage of runoff for radon, sufficient occurrences of minerals containing uranium within granite as a radon source, a high concentration of radon within the granite area and clear differences of radon concentrations between granitic and metamorphic areas. The Jangsu area was characterized by the presence of normal faults, wide distributions of alluvium, and ambiguities on radon concentrations indoors among areas of geological differences. Considering the granite area and alluvium surrounded with granite areas, the characteristics of radon concentrations within soils and indoors in the Jangsu area are similar to those of the Hwacheon area. High concentrations are found with entisol and inceptisol in the Hawcheon area, but with entisol, inceptisol, and ultisol in the Jangsu area. High radon concentrations are found in sandy loam and/or loam. High concentrations are found in recently constructed or brick buildings, but low concentrations in traditional or prefabricated houses showing a high possibility of outward flow. Conclusions: The overall results suggest that radon concentrations in the Hwacheon and Jangsu area are dominantly influenced by geological characteristics with additional artificial influences.

전라북도 일부지역의 라돈 농도 비교 연구 (Comparison of Indoor Radon Concentrations in Areas of Jeollabuk-do Province)

  • 유주희;이규선;서수연;김선홍;이정섭
    • 한국환경보건학회지
    • /
    • 제45권6호
    • /
    • pp.658-667
    • /
    • 2019
  • Objective: This study was designed to compare construction types and seasonal radon concentrations in dwellings in Jeollabuk-do Province in Korea. Methods: The measurement of indoor radon concentrations in 79 dwellings using alpha-track detectors was performed every three months (seasonally) over one year between 2015 and 2016. Also, Radon concentrations in soil were measured in spring to investigate the correlations between the concentrations in soil and indoor air. Results: The annual average concentration of indoor radon for dwellings was 89.7±72.1(GM: 72.4) Bq/㎥, with a range (min-max) of 17.2 to 505.4 Bq/㎥. The highest indoor radon concentration was measured in winter and the lowest was shown in summer. The geometric mean of radon concentration in winter was 1.03-2.58 times higher than other seasons. Radon concentrations in soil were investigated at the depth of 1 m, and the concentrations ranged from 1,780 Bq/㎥ to 123,264 Bq/㎥. This showed low correlations with indoor radon concentrations.