• Title/Summary/Keyword: Soil quality levels

Search Result 222, Processing Time 0.026 seconds

Environmental Conditions and Resource Management in Smallholder Dairy Farms in Thailand. II. Effects of Dairy Wastes on Water and Soil

  • Chantalakhana, C.;Korpraditsakul, R.;Skunmun, P.;Poondusit, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.220-225
    • /
    • 1999
  • The environmental conditions in smallholder dairy farms especially the effects of dairy wastes on waters and soil were the main objectives of this investigation. Forty-three dairy farms from an older dairy cooperative (Nongpho Dairy Cooperative, NP) were compared with four dairy fauns from relatively new dairy cooperative (Kamphaengsaen Dairy Cooperative, KS) for the quality parameters of water and soil samples during a 12-month period. Forty-three farms at NP were from three geographical areas and three levels farm crowdedness. The results from this study clearly showed that the waste waters from older dairy barns contained much higher levels of organic and inorganic substances which could create environmental pollution if not properly managed. The differences in waste water qualities due to areas and seasons were not significant, while waste water samples from crowded farms tended to contain higher averages of waste water parameters such as COD and BOD. Highly significant correlations between pairs of waste water parameters indicated that certain parameters can be used without the need for chemical analysis of some other parameters. The qualities of well water on dairy farms as well as water samples from public waterways nearby indicated some contamination of dairy wastes such as manure. Storage and sun-drying of dairy manure on bare soil surface could result in the contamination of underground water and nearby water sources. Some recommendations from this study if implemented can prevent environmental pollution in smallholder dairy farms.

Establishment of Non-drinking Groundwater Quality Standards: General Contamination Substances (비음용 지하수 오염물질 기준설정체계 구축 연구: (2) 일반오염물질)

  • An, Youn-Joo;Nam, Sun-Hwa;Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.24-29
    • /
    • 2014
  • To data, there was no systematic basis for establishing the content and allowed levels of general contamination substances in the Korean groundwater quality standards for non-drinking water. Recently, use of specific procedures for deriving valid groundwater quality standards have become mandatory. This study first investigated the methodology for deriving groundwater quality standards in the European Commission (EC), considering background groundwater quality and domestic and international standards related to water quality. Furthermore, this study investigated the existing specified procedure of standards related to water quality (e.g. surface water, drinking water, and wastewater). Our findings showed that EC and Member States presented the methods for deriving groundwater threshold values for general chemicals. Finally, we have proposed the following procedures of deriving Korean groundwater quality: (1) Selection of groundwater pollutant population, (2) selection and monitoring of priority substances, (3) monitoring, (4) selection of groundwater quality standard candidates, (5) selection of new substances and values for groundwater quality standards.

Study on the soil related assessment factors in Korean Environmental Impact Assessment (환경영향평가 시 토양 관련 평가 항목에 대한 고찰)

  • Yang, Jihoon;Park, Sun Hwan;Kim, Tae Heum;Hwang, Sang Il
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2016
  • Environmental impact assessment has been implemented for more than 30 years in Korea. During that period, various amendments were carried out about target plan and assessment factors. However, in current environmental impact assessment act, only a few factors has been considered for soil environment assessment. This study analyzes the national and foreign environmental impact assessment guidelines on soil related factors and figures out the problems and implications of Korean environmental impact assessment. In Korea, water quality, topography and geology, hydraulics and hydrology, and soil contamination were analyzed as a soil related factors. The main assessment targets were pollution related factors such as soil pollution levels, amount of rainfall runoff, and non-point sources. However, in the case of foreign guidelines, soil compaction, soil sealing, and soil salinization is being analyzed for evaluating function and quality of soil environment. The revision of soil-related factors are needed for sustainable development of Korea.

Bacterial community structure of paddy fields as influenced by heavy metal contamination

  • Tipayno, Sherlyn;Samaddar, Sandipan;Chatterjee, Poulami;Halim, MD Abdul;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.245-245
    • /
    • 2017
  • Heavy metal pollution of agricultural soils affects land productivity and has impact on the quality of surrounding ecosystem. Soil microbial community parameters are used as reliable indices for assessing quality of agricultural lands under metal stress. This study investigated bacterial community structure of polluted and undisturbed paddy soils to elucidate soil factors that are related to alteration of bacterial communities under conditions of metal pollution. No obvious differences in the richness or diversity of bacterial communities were observed between samples from polluted and control areas. The bacterial communities of three locations were distinct from one another, and each location possessed distinctive set of bacterial phylotypes. The abundances of several phyla and genera differed significantly between study locations. Variation of bacterial community was mostly related to soil general properties at phylum level while at finer taxonomic levels concentrations of arsenic and lead were significant factors. According to results of bacterial community functional prediction, the soil bacterial communities of metal polluted locations were characterized by more abundant DNA replication and repair, translation, transcription and nucleotide metabolism pathway enzymes while amino acid and lipid metabolism as well as xenobiotic biodegradation potential was reduced.Our results suggest that the soil microbial communities had adapted to the elevated metal concentrations in the polluted soils as evidenced by changes in relative abundances of particular groups of microorganisms at different taxonomic resolution levels, and by altered functional potential of the microbial communities.

  • PDF

Fluoride in soil and plant

  • Hong, Byeong-Deok;Joo, Ri-Na;Lee, Kyo-Suk;Lee, Dong-Sung;Rhie, Ja-Hyun;Min, Se-won;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.522-536
    • /
    • 2016
  • Fluorine is unique chemical element which occurs naturally, but is not an essential nutrient for plants. Fluoride toxicity can arise due to excessive fluoride intake from a variety of natural or manmade sources. Fluoride is phytotoxic to most plants. Plants which are sensitive for fluorine exposure even low concentrations of fluorine can cause leave damage and a decline in growth. All vegetation contains some fluoride absorbed from soil and water. The highest levels of F in field-grown vegetables are found up to $40mg\;kg^{-1}$ fresh weight although fluoride is relatively immobile and is not easily leached in soil because most of the fluoride was not readily soluble or exchangeable. Also, high concentrations of fluoride primarily associated with the soil colloid or clay fraction can increase fluoride levels in soil solution, increasing uptake via the plant root. In soils more than 90 percent of the natural fluoride ranging from 20 to $1,000{\mu}g\;g^{-1}$ is insoluble, or tightly bound to soil particles. The excess accumulation of fluorides in vegetation leads to visible leaf injury, damage to fruits, changes in the yield. The amount of fluoride taken up by plants depending on the type of plant, the nature of the soil, and the amount and form of fluoride in the soil should be controlled. Conclusively, fluoride is possible and long-term pollution effects on plant growth through accumulation of the fluoride retained in the soil.

Correlation of Soil Physical Properties and Growth of Turfgrass on the Ground of Olympic-mainstadium (Olympic 주경기장 지반 상토층의 토양 물리성과 잔디 생육의 상관관계)

  • 김인철;주영규;이정호
    • Asian Journal of Turfgrass Science
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • This study was conducted to analyze the correlation of soil physical properties and growth of turfgrass on the ground of Olympic-mainstadium. Soil hardness and turf visual quality were measured at 77 plots (10m x 10m divided each) independently and analyzed correlation later. Physicochemical properties of the topsoil analyzed from three typical levels of the severely, moderately, slightly compacted areas. The ground showed high hardness at the center circle and the goal line, but low at the end line areas. On the contrary, visual quality rate of turfgrass was low at the center circle and the goal line, but high at the end line areas. The correlation was shown a significant negative value on soil hardness between turf visual quality Soil hardness seems to be accelerated by the improper soil texture of sandy loam which contained a large amount of finer particle of silt (10.7%) and clay (11.1%) which values exceeded for USGA (United State Golf Association) recommendation. Deterioration of turf quality resulted initially from improper construction and followed by high soil compaction with continuous uses of the ground without proper maintenance. To perform the international quality of the turf ground, the initial construction procedures should be followed by standard specifications of sport ground.

Optimum Drainage Time for Rice Quality in Tidal Reclaimed Area (간척지 토양에서 벼 재배시 염농도별 완전 낙수시기)

  • Choi Weon-Young;Lee Kyu-Seong;Ko Jong-Cheol;Moon Sang-Hoon;Kim Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.85-87
    • /
    • 2005
  • This study was conducted to identify the effective dyainage-time influencing rice yield and grain quality on a reclaimed saline soil, the experiment conducted at the Gyehwado substation of the Honam Agricultural Research Institute from 2002 to 2003. The experimental field contained $0.1\%\;and\;0.3\~0.4\%$ NaCl in soil solution, respectively. The experiment involved salinity levels as main plot and sub-plot where consisted of 6 treatments in a split plot design with three replicates. Rice yield performance showed a maximum at drainage-time for 35 days after flowering under medium salinity level, but indicated only $64\%$ of yield level compare to low soil salinity. Percentage of well-shaped rice was high in low soil salinity indicating there aye severe affection for grain quality in medium soil salinity regardless water drainage-time.

Characterization of Cone Index and Tillage Draft Data to Define Design Parameters for an On-the-go Soil Strength Profile Sensor

  • Chung S. O.;Sudduth Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-20
    • /
    • 2004
  • Precision agriculture aims to minimize costs and environmental damage caused by agriculture and to maximize crop yield and profitability, based on information collected at within-field locations. In this process, quantification of soil physical properties, including soil strength, would be useful. To quantify and manage variability in soil strength, there is need for a strength sensor that can take measurements continuously while traveling across the field. In this paper, preliminary analyses were conducted using two datasets available with current technology, (1) cone penetrometer readings collected at different compaction levels and for different soil textures and (2) tillage draft (TD) collected from an entire field. The objective was to provide information useful for design of an on-the-go soil strength profile sensor and for interpretation of sensor test results. Analysis of cone index (CI) profiles led to the selection of a 0.5-m design sensing depth, 10-MPa maximum expected soil strength, and 0.1-MPa sensing resolution. Compaction level, depth, texture, and water content of the soil all affected CI. The effects of these interacting factors on data obtained with the soil strength sensor should be investigated through experiments. Spatial analyses of CI and TD indicated that the on-the-go soil strength sensor should acquire high spatial-resolution, high-frequency ($\ge$ 4 Hz) measurements to capture within-field spatial variability.

  • PDF

Comparison of the Chemical Properties of Soil and the Main Components of the Southern Ecotype Garlic Cultivar Cultivated in the Volcanic or Nonvolcanic Ash Soil of Jeju Island (제주의 화산회토양 및 비화산회토양에서 재배한 난지형 마늘의 주요성분과 토양의 화학적 특성 비교)

  • Kim, Ju-Sung;Ra, Jong Hwan
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.549-556
    • /
    • 2016
  • In this study, we analyzed and compared the constituents of Southern ecotype garlic cultivars, Namdo and Daeseo garlic, cultivated in volcanic and non-volcanic ash soil in Jeju Island and compared the soil properties in these regions. The volcanic ash soil in which Namdo garlic grew had higher electrical conductivity and more available sulfur, whereas the volcanic ash soil in which Daeseo garlic was cultivated had a higher amount of organic matter and total nitrogen. Also, non-volcanic ash soil in which Namdo garlic was cultivated had higher levels of available phosphorous. Namdo garlic cultivated in volcanic ash soil had high levels of total soluble solids and a high allicin content and Daeseo garlic exhibited a higher reducing sugar content. Furthermore, amongst the macroelements found in garlic grown on Jeju Island, potassium was highest, followed by sulfur, magnesium, calcium, and sodium. Iron was the most abundant micronutrient, followed by zinc, manganese, and copper. These results will be of interest to farmers aiming to cultivate high-quality garlic.

Effects of Phosphogypsum Application on Field Soil Properties and Yield and Quality of Garlic (Allium sativum L.) (부산석고 시용에 의한 밭 토양 특성과 마늘의 수량 및 품질에 미치는 영향)

  • Kim, Young-Nam;Cho, Ju Young;Yoon, Young-Eun;Choe, Hyoen Ji;Cheong, Mi Sun;Lee, Mina;Kim, Kwon-Rae;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • BACKGROUND: Globally, large amounts of phosphogypsum (PG), which is a by-product of the phosphate fertilizer production, is deposited in open areas. As PG contains calcium, phosphate, and sulphate, it can be used as a soil amendment in farmlands. This study was conducted to investigate the effects of PG application on properties of field soil and yield and quality of garlic (Allium sativum L.), and to seek appropriate level of PG application into the field. METHODS AND RESULTS: This experiment was conducted by applying PG at four different levels that were adjusted based on 65% calcium base saturation in the field soil: 0% (control), 50% (PG50, 100 kg/10a), 100% (PG100, 200 kg/10a), and 150% (PG150, 300 kg/10a). Following cultivation, soil electrical conductivity (EC), organic matter, available P and exchangeable Ca increased, whilst soil pH decreased. With increase in PG application level, soil EC and exchangeable Ca increased. PG application increased concentrations of water soluble Ca and SO4 across the soil profile, especially in PG150. The highest yield of garlic was found in PG100 treatment. The plant's uptake for N, P, Ca, and S increased by PG applications, but that for K decreased. Moreover, concentrations of S-related amino acids such as cysteine and methionine in garlic increased by PG applications. The increased content of nutrients and amino acids with PG supply might improve yield, quality, and favor of the crop. CONCLUSION: Overall, PG application at 200 kg/10a into a field had the best effect on improving soil fertility as well as yield and quality of garlic. Further studies are required to maximize efficiencies of PG supply in soil management and production of various crops.