• Title/Summary/Keyword: Soil problems

Search Result 1,178, Processing Time 0.033 seconds

Analysis and Improvement Practise of Drainage Problem on Soil Profile at the Golf Course Fairway (골프코스 페어웨이 지반 토양의 배수불량 원인과 개선방안)

  • Lee, Jung-Ho;Jung, Gi-Rai;Lee, Jong-Min;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • Research was focused on the improvement of poor drainage problems on golf course fairway which had not been performed soil test or properly amended during the course construction. The analysis of the drainage problem basically was caused by a deterioration of soil physical properties by the top layer compaction. The soil hardness reached about 3,000 Kpa around 5~6 cm of soil profile. The slow infiltration speed to subsoil by the compaction was caused directly a poor drainage capacity. However, the properly amended sand soil showed an apparent value of 1,500 Kpa through the subsoil. The water content test showed a similar result that higher rate of 20~30% and ideal rate of 8~12% at poor drainage area and successfully amended area, respectively. However, an imported topsoil media which had higher content of silt and clay from a trans-planted sod had made a heterogeneous soil profile and that caused a poor drain capacity by a low infiltration rate. Those drainage problems triggered to buildup a reduced soil layer by poor soil gas exchange. The soil environment of deoxidation enhanced anaerobic microbial population and induced methane gas build-up to 55 ppm, and that resulted an adverse effect on turf growth by root growth retardation, consequently.

Production of Environment-friendly Artificial Media for Agriculture Using Urban Sludge (도시발생 슬러지를 이용한 환경친화적 인공배지 생산)

  • 김선주;윤춘경;양용석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.102-111
    • /
    • 1998
  • Large amount of sludge have been generating in the process of water and wastewater treatment in urban area, and it has been making many environmental problems. Currently almost of sludge is landfilled, and since sludge is difficult to handle and dehydrate, the permeated water from the filled-in ground contaminate the surrounding soil and groundwater which may cause serious environmental and sociological problems. The organic component in sludge can be almost removed through the heat treatment process, and the final product is called artificial soil or artificial media according to the temperature control. To produce artificial media using sludge, chabazite and lime were used as an additive, and the mixture of sludge & additives was thermally treated in the firing kiln at about 800~1, 100。C for about fifteen minutes. The physical and chemical characteristics of the produced artificial media were analyzed, and it showed that it can be used as an artificial media for plant production or soil conditioner for farmland. The concentrations of the toxic heavy metals in the artificial media were lower than the soil quality standard for farmland. The characteristics of produced artificial media, using the mixture of sludge and additives through the heat treatment, is similar to the natural chabazite and soil. The analyzed result of the mineral composition of artificial media showed that it has a characteristics similar to natural stable soil, so the produced artificial media may be applied to farmland or water culture without causing adverse effect. Therefore this study showed that the above process can be a feasible alternative for sludge treatment.

  • PDF

유류오염 토양-지하수 복원기술: 문제와 개선방향

  • 이석영;윤준기;이채영;김길홍;신언빈;조정숙
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.3-10
    • /
    • 2003
  • Soil and groundwater contamination by petroleum hydrocarbon products is only one of many environmental problems in Korea. However, many environmental consulting companies have been targeted their business on this subject because the petroleum-oil-lubricant (POL) products have been widely used product and accidental releases of the products from storages resulted numerous small and large contaminated sites throughout Korea. Therefore, many small and large companies are actively participating in environmental assessment and remediation projects for the POL contaminated sites. Remedial technologies for the POL contaminated sites have been developed for many years by government and private institutions throughout the world. Development of a new decontamination technology for the POL contaminated sites is no longer attractive issue in research community because scientific bases of most cost-effective remedial technologies are well understood and have been used in the field by commercial sector. Numerous sites contaminated by underground tanks at gas stations have been remediated by relatively small companies in this country. We should appreciate their noticeable contributions as a frontier under very difficult market environment in Korea. We heard many successful stories as well as a few failure stories. Soil-groundwater remediation of POL contaminated site is not a simple task as shown in the text books or protocols. Therefore, failure risk is always with us, which requires continuous efforts for improvement of the technologies by the users and developers. In this presentation, author will discuss technical problems encountered and improvement made during implementation of several remedial technologies applied by Samsung Environmental Team. This is not a presentation about research or case study. We want to share our thought and experience with environmental engineers actively engaged in soil and groundwater remediation projects in Korea.

  • PDF

Remediation of Contaminated Soil with Organic Contaminants using Microemulsion (마이크로이멀젼을 이용한 유기오염물로 오염된 지반의 정화)

  • Park, Ki-Hong;Kwon, Oh-Jung;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.597-604
    • /
    • 2003
  • In the soil washing process, the contaminants are usually removed by abrasion from soil particles using mechanical energy and water However, organic contaminants with low water solubility like polycyclic aromatic hydrocarbons (PAH) are remained on soil particles. Previous studies have shown that surfactant possessing amphipathic activity enhances the solubility of organic materials. For this reason solutions with surfactants have been used to improve removal of organic contaminants on soil washing process. But, in this manner, many problems were found like complete loss of surfactants and additional contamination by surfactant. The remediation method using microemulsion has been introduced to overcome these disadvantages. In this case, surfactants are recycled by phase separation of microemulsion after remediation. In microemulsion process, the surfactant will be recycled by phase separation of the microemulsion into a surfactant-rich aqueous phase and an oil phase after extraction. That is why remediation concept applying microemulsion as washing media has been Introduced. Suitable microemulsion have to be used in order to have the chance of refilling the soil after decontamination and to avoid any risk due to toxicity. The purpose of this research is to evaluate effect of microemulsion to remediation of contaminated soil. We performed test with various organic contaminants like Pyrene and BTEX, also compared efficiency of remediation in microemulsion process with soil washing

  • PDF

South Dakota Soils: Their Genesis, Classification, and Management (South Dakota 토양의 발생, 분류 및 관리)

  • Malo, Douglas D.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.413-433
    • /
    • 2010
  • South Dakota is an important agricultural state in the United States with annual cash receipts from agricultural products exceeding $9 billion dollars. This production is possible because of large areas of productive soils. This publication describes the general characteristics and qualities of the major soil groups recognized in South Dakota. The soil forming factors are briefly described, soil classification is introduced, and the genesis of typical Udalf and Ustoll soils are discussed. Soil management issues impacting the use of SD soils are considered. Long-term (>70 yrs) cultivation has significantly reduced surface soil organic carbon levels (>30% reduction) when compared to non-cultivated soil. Soil test phosphorus levels significantly increased in cultivated fields due to commercial P fertilization. The major long-term production problems for SD soils are conservation of soil moisture, organic matter and nitrogen losses, fertility management, and wind and water erosion control.

Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area (중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

Evaluation of Streptomyces saraciticas as Soil Amendments for Controlling Soil-Borne Plant Pathogens

  • Wu, Pei-Hsuan;Tsay, Tung-Tsuan;Chen, Peichen
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.596-606
    • /
    • 2021
  • Soil-borne diseases are the major problems in mono cropping. A mixture (designated LTM-m) composed of agricultural wastes and a beneficial microorganism Streptomyces saraceticus SS31 was used as soil amendments to evaluate its efficacy for managing Rhizoctonia solani and root knot nematode (Meloidogyne incognita). In vitro antagonistic assays revealed that SS31 spore suspensions and culture broths effectively suppressed the growth of R. solani, reduced nematode egg hatching, and increased juvenile mortality. Assays using two Petri dishes revealed that LTM-m produced volatile compounds to inhibit the growth of R. solani and cause mortality to the root knot nematode eggs and juveniles. Pot and greenhouse tests showed that application of 0.08% LTM-m could achieve a great reduction of both diseases and significantly increase plant fresh weight. Greenhouse trials revealed that application of LTM-m could change soil properties, including soil pH value, electric conductivity, and soil organic matter. Our results indicate that application of LTM-m bio-organic amendments could effectively manage soil-borne pathogens.

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

Green Pepper Cultivation in Mixture Bed of Soil and Rice Hull for Alleviation of Salinity Problems in Plastic Film House (연작장해 경감을 위한 시설 고추의 왕겨 혼합 소토양 재배기술)

  • Kim, Jin-Won;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.340-344
    • /
    • 2005
  • Salinity problems are caused from the accumulation of soluble salts in the root zone. These excess salts reduce plant growth and vigor by altering water uptake and causing ion-specific toxicities or imbalances. In this investigation, green pepper cultivation technique using mixture bed of soil and rice hull and surface drop fertigation system was examined to prolong the productivity of salt-affected plastic film house soils. Green pepper growth was better in the mixture bed of soil and rice hull comparing to the conventional soil cultivation. Especially root growth was much better and the root had more thin root system in the mixture bed of soil and rice hull. The better growth of root may be due to the better physical conditions and lower EC in the mixture bed of soil and rice hull where nutrient supply was well-managed with fertigation system. In the cultivation with mixture bed of soil and rice hull, fruit yield of green pepper was significantly higher; increased by 43% in comparison to the conventional soil cultivation. Pepper cultivation technique using mixture bed of soil and rice hull and surface drop fertigation system is expected to be a useful method for maintaining and prolonging the productivity of salt-affected plastic film house soils.

Engineering Characteristics of the Light Weight Soil Using Phosphogypsum and EPS Beads (인산석고-EPS 조각을 활용한 경량혼합토의 공학적 특성)

  • Kim, Youngsang;Suh, Dongeun;Kim, Wonbong;Lee, Woobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.19-25
    • /
    • 2009
  • The current study developed light-weighted mixed soil that can solve problems related with soft soil such as ground subsidence, sliding and lateral displacement of ground. By reducing weight of reclaimed soil through mixing phosphogypsum and recycled EPS beads with the weathered granite soil. A series of geotechnical laboratory tests including physical index test, compaction test, CBR test, and direct shear test were performed and engineering properties were reviewed in order to assess applicability of the light-weighted mixed soil for roads and abutment and various back-filling materials at the reclamation area. Based on the laboratory test results, it was found that the maximum dry unit weight of the light-weighted soil ranges $14.32{\sim}15.79kN/m^3$ and the optimum water content ranges 21.91~24.23%, which means there is 11~19.3% weight decrease effect when comparing with general weathered granite soil. Also it was found that the corrected CBR value ranges 10.4~18.4% satisfying the domestic regulations on road subgrade and back-filling material. In addition, as for shear strength parameter, cohesion ranges 10.79~18.64 kPa and internal frictional angle ranges $35.4{\sim}37.2^{\circ}$, which are similar with those of general construction soil and back-filling material used in Korea. So it can be concluded that light-weighted mixed soil with phosphogypsum can be used effectively for soft reclamation ground as actual filling material and back-filling material. From the current study, it was found that light-weighted mixed soil with phosphogypsum has not only weight reduction effect, but also has no special problems in shear strength and bearing capacity. Therefore, it is expected that phosphogypsum can be recycled in bulk as road subgrade and back-filling material at the reclamation area.

  • PDF