• Title/Summary/Keyword: Soil pollution assessment

Search Result 163, Processing Time 0.04 seconds

The Evaluation on Solidification of Dredged Sediment for Recycle from Stagnant Water Area (정체성 수역 퇴적물 재활용을 위한 고형화 평가)

  • Kim, Sang Hyun;Ahn, Tae Woong;Choi, I Song;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.63-69
    • /
    • 2012
  • Sediment has been increasingly acknowledged as a carrier in water system and an available contamination. For this reason, dredging of sediment in reservoir to remediate water quality and secure storage capacity is conducted annually. However, disposal of numerous dredged sediment is necessary as a secondary problem. Currently, in Korea, dredged sediment is classified as waste to be reclamated or recycled into sandy soil, however, they are still in trouble because of spacial and environmental problem. Therefore, rather than simple disposal or reuse into sandy soil, it is necessary to research on method to manage main cause of pollution and increase the value as a resource. In this study, we intend to develop a recycle technology for numerous dredged sediment produced by dredging in deteriorated reservoirs using solidificator (stabilizer). To achieve this, we will consider utilization of dredged sediment and evaluation of use possibility as natural recycle by analysis the characteristics of soil-solidificator mixture in terms of physicochemical properties and the mixing ratio between sediment and solidificator.

비위생 매립장의 침출수 유동경로 탐지를 위한 물리탐사의 적용성

  • 박삼규;김을영;최보규;이병호;박용기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.180-183
    • /
    • 2003
  • Recently, the pollution of soil and groundwater becomes a serious social problem, and geophysical exploration methods have been introduced as a remedial investigation method of subsurface. Digital technologies such as personal computer have revolutionized our ability to acquire large volumes of data in a short term, and to produce more reliable results for subsurface image. Also, color graphics easily visualizes the survey results in a more understandable manner, and it is widely used for not only characterizing the contaminated subsurface but also monitoring contaminant and remedial process. In this paper, electrical resistivity survey were carried out In order to understand characteristics of waste landfills, and the applicability of geophysical prospecting to site assessment of waste landfill was also tested. According to the result, electrical resistivity survey were effective in estimating distribution of the leachate plume.

  • PDF

Statistical Assessment on the Heavy Metal Variation in the Soils around Abandoned Mine(Case Study for the Samgwang Mine) (폐광산지역 토양 중금속원소들에 대한 통계학적 환경오염 특성평가)

  • Cho, Il-Hyoung;Chun, Suk-Young;Chang, Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1451-1462
    • /
    • 2007
  • Heavy metal concentrations in the soil were investigated for the abandoned Samkwang metal mine, Cheongyang-Gun, Chungnam Province, Korea. The concentrations of heavy metal(As, Cd, Cu, Ni, Pb, Zn) were determined in mine soils collected at the abandoned mine sites to obtain a general classification and specification of the pollution in this highly polluted region. The results estimated with the normal test and basis statistic on the central tendency and variation showed that the distribution of heavy metal concentration had significantly different at the range of all locations. The range of spatial distribution on the relationship of heavy metal concentration and pH was $4.8{\sim}8.8$ and heavy metal concentration on the type of land use was highest in forest land, and also Ni and Zn in farm and rice field showed the high concentration. The distribution of heavy metal concentration on the depth of a soil showed that the metal concentrations in subsoil were higher than of those in surface soil, while the concentration of Cu and Ni had no significant difference on the depth of soil. Results from the correlation analysis using the data except the extreme and unusual data revel that Zn-Cd(r=0.867), Zn-As(r=0.797), Zn-Pb(r=0.764), Cu-Cd(r=0.673), Cu-As(r=0.614) and Zn-Ni(r=0.605) were the most important parameters in assessing variations of heavy metal in soil. To discriminate pattern differences and similarities among samples, principal factor analysis(PFA) and cluster analysis(CF) were performed using a correlation matrix. This study suggests that PFA and CF techniques are useful tools for identification of important heavy metal and parameters. This study presents the necessity and usefulness of multivariate statistical assessment of complex databases in order to get better information about the quality of soil and gives the basis information to clean up the abandoned mine sites.

Grid Based Nonpoint Source Pollution Load Modelling

  • Niaraki, Abolghasem Sadeghi;Park, Jae-Min;Kim, Kye-Hyun;Lee, Chul-Yong
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.246-251
    • /
    • 2007
  • The purpose of this study is to develop a grid based model for calculating the critical nonpoint source (NPS) pollution load (BOD, TN, TP) in Nak-dong area in South Korea. In the last two decades, NPS pollution has become a topic for research that resulted in the development of numerous modeling techniques. Watershed researchers need to be able to emphasis on the characterization of water quality, including NPS pollution loads estimates. Geographic Information System (GIS) has been designed for the assessment of NPS pollution in a watershed. It uses different data such as DEM, precipitation, stream network, discharge, and land use data sets and utilizes a grid representation of a watershed for the approximation of average annual pollution loads and concentrations. The difficulty in traditional NPS modeling is the problem of identifying sources and quantifying the loads. This research is intended to investigate the correlation of NPS pollution concentrations with land uses in a watershed by calculating Expected Mean Concentrations (EMC). This work was accomplished using a grid based modelling technique that encompasses three stages. The first step includes estimating runoff grid by means of the precipitation grid and runoff coefficient. The second step is deriving the gird based model for calculating NPS pollution loads. The last step is validating the gird based model with traditional pollution loads calculation by applying statistical t-test method. The results on real data, illustrate the merits of the grid based modelling approach. Therefore, this model investigates a method of estimating and simulating point loads along with the spatially distributed NPS pollution loads. The pollutant concentration from local runoff is supposed to be directly related to land use in the region and is not considered to vary from event to event or within areas of similar land uses. By consideration of this point, it is anticipated that a single mean estimated pollutant concentration is assigned to all land uses rather than taking into account unique concentrations for different soil types, crops, and so on.

  • PDF

Phenolic compounds removal by grasses and soil bacteria after land application of treated palm oil mill effluent: A pot study

  • Phonepaseuth, Phongphayboun;Rakkiatsakul, Viroj;Kachenchart, Boonlue;Suttinun, Oramas;Luepromchai, Ekawan
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.127-136
    • /
    • 2019
  • Land application of treated palm oil mill effluent (TPOME) could be used as an alternative tertiary wastewater treatment process. However, phenolic compounds in TPOME might be leached to the environment. This study investigated the ability of grasses on reducing phenolic compounds in the leachate after TPOME application. Several pasture grasses in soil pots were compared after irrigating with TPOME from stabilization ponds, which contained 360-630 mg/L phenolic compounds. The number of soil bacteria in planted pots increased over time with the average of $10^8CFU/g$ for mature grasses, while only $10^4-10^6CFU/g$ were found in the unplanted control pots. The leachates from TPOME irrigated grass pots contained lower amounts of phenolic compounds and had lower phytotoxicity than that of control pots. The phenol removal efficiency of grass pots was ranged 67-93% and depended on grass cultivars, initial concentration of phenolic compounds and frequency of irrigations. When compared to water irrigation, TPOME led to an increased phenolic compounds accumulation in grass tissues and decreased biomass of Brachiaria hybrid and Brachiaria humidicola but not Panicum maximum. Consequently, the application of TPOME could be conducted on grassland and the grass species should be selected based on the utilization of grass biomass afterward.

Investigation on the Contamination of the Vicinity of Abandoned Coal Mines Located Near the Obong Darn and Preventive Measures (오봉댐 유역의 폐탄광에 의한 오염특성과 감소방안 연구)

  • Park, Sun Hwan;Chang, Yoon Young;Jeong, Jeong Ho;Son, Jeong Ho;Park, Seok Hyo
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.143-156
    • /
    • 2007
  • This study has researched the management status and the pollution level of water, soil, stream sediments of 11 abandoned coal mines out of a total of 12 within Obong-Dam area except Bukyung mine, which was submerged when constructing Obong-Dam, and selected areas which are in needs to have pollution control facilities in the first place. From the results of examination on the runoff at the waste rock pile and mineheads, the runoff from Sueun mine (pH, Fe, Al), Samwon mine (pH, Al), Wangdo mine (pH, Al), Mose mine (pH, Fe, Al) and Daeryeong mine (pH) exceeded the permissible discharge standards of the water quality, but the water at merging point with Obong-Dam after joined with Doma branch satisfied both Water Quality Standards and Drinking Water Quality Standards. In regard to groundwater contamination, it is found that areas where exceeded the Drinking Water Quality Standards are Wangdo mine (pH), Jangjae mine (pH, Zn), Daeryeong mine (pH) whereas all areas satisfied Soil Contamination Warning Standards of Soil Environmental Conservation Law. When comparing a research result on underwater sediments of branches of abandoned mines to the EPA Guidelines for classification of great lakes harbor sediments, Dongguk Gaerim (Fe), Jungwon mine (Fe), Daebo mine (Mn), Samwon mine (Mn) and Daeryeong mine (Mn) showed mid-level of contamination, whereas Sueun (Fe, Mn), Daebo mine (Fe), Woosung mine (Fe, Mn), Wangdo mine (Fe, Mn), Mose mine (Fe) and Daeryeong mine (Fe) showed high-level of contamination. In addition, contamination levels of underwater sediments in Wangsan and Doma branch where abandoned mine's branches merge together, Wangsan branch showed no contamination at all whereas Doma branch shows mid-level of contamination which reflect the Doma branch is affected by waste rock pile and minehead runoff of the abandoned mines in the Doma branch area. It is concluded that Mose mine and Sueun mine required treatment of acid mine drainage. and Wangdo, Jungwon, and Samwon mines were in need of mine tailing and erosion control work. The Samwon mine additionally required a control system for closed minehead runoff. Although the Samwon mine reached a high concentration of Al, Mn $Ca^{2+}$, $SO{_4}^{2-}$ in the runoff, the levels decreased after it was combined with a tributary. It has been concluded that after further monitoring of the cause of pollution, a preventive measure system may be needed to be built.

Assessment of Radionuclide Behavior on Agricutural Soil deposited from Atmosphere (대기중 방사성 핵종의 토양침적시 거동평가)

  • 유동한;이한수
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.77-78
    • /
    • 2002
  • 원자력시설이나 원자력발전소에서 사고가 발생하여 대기로 방출된 방사능물질은 두 가지 주요경로를 통해 인체노출이 일어난다 첫째는 지역내 대기중에 존재하는 방사성물질이 인체의 호흡이나 피부 등을 통해 체내로 흡입되는 직접적인 노출 (Direct Exposures)이고 다른 하나는 방사능물질이 대기로부터 주변의 토양에 침적하고 이러한 토양에서 재배된 오염된 농작물들 (쌀, 보리, 밀, 또는 과일, 채소)을 인간이 섭취하거나, 방사능물질에 오염된 목초로 키운 축산물(소, 돼지, 닭 등)과 이들로 생산하는 제품들(우유, 고기, 달걀 등)을 인간이 섭취함으로써 이루어지는 보다 간접적인 인체노출(Indirect Exposures)이 있을 수 있다. (중략)

  • PDF

Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System (SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석)

  • Yoo, Dongsun;Ahn, Jaehun;Yoon, Jongsuk;Heo, Sunggu;Park, Younshik;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

A Study on Selection and Measures of the Apprehensive Areas of Soil Loss in the So-ok Stream Watershed (소옥천유역 토양유실 우심지역 선정 및 대책에 관한 연구)

  • Jeong, Dong-Hwan;Kim, Haejung;Lee, Young Joon;Hong, Sunhwa;Yoon, Johee;Choi, Heelak;Cho, Hong-Lae
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.617-629
    • /
    • 2012
  • This study aims to find out critical areas of a soil loss and propose feasible measures to reduce the water quality deterioration by a soil lose. As a study area, the So-ok stream catchment locating at the upper area of Daecheong Reservoir is selected and intensive field observation was carried out. RUSLE model is applied to assess the impact of the pollution migration by a soil ross from the critical areas during storms on the water quality of Chusori embayment. As results, total amount of the soil ross assessed against to the critical area on which major type of land use is a orchard for fruits is 54.3 ton/ha/yr and that of an abandoned mine site is about 200 ton/ha/year. In particular as effective measures, a plantation of an appropriate species of fruit trees and an application of ecologic restoration schemes are proposed against to the orchard and the abandoned mine site, respectively.

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.