• Title/Summary/Keyword: Soil particle migration

Search Result 14, Processing Time 0.022 seconds

A Study on the Granulometry and Chemical Composition of Psudo-Gleized Soil in Jeongdongjin Area (정동진 의사글레이층의 입도와 화학 조성에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.3
    • /
    • pp.27-45
    • /
    • 2017
  • At the upper part of terrace deposits at Jeongdongjin area, there is a structure in which reddish brown and grayish white layers laying horizontally. Previous studies have reported the existence of these structures within the deposits and suggested the theoretical background related to the formation process. However, the analysis of physical properties and chemical composition such as particle size, classification, etc. of the materials constituting the reddish brown and grayish white layers is scarcely done. In this study, the physico - chemical properties of gray - white and reddish brown beds are investigated. The mean grain size of the particles was less than $4{\varphi}$ in both layers and the reddish brown layer was more coarse. The results shows that the sorting of the grayish white layer is better. The chemical composition of both layers shows that the average concentration of $SiO_2$, $Al_2O_3$ and $K_2O$ of the grayish white layer was higher than those of the reddish brown layer. The concentration of $Fe_2O_3$ of reddish brown lyaer was 3 times higher than those of the grayish white layer. The degree of chemical weathering (CIA) is 90 or so in both the reddish brown and grayish white layers, indicating a significant level of chemical weathering. In conclusion, reddish brown layers had been formed by the processes related to the migration of iron and the migration of water that induced aggregation after the formation of sediments (psudo-gleization). In this study area, a vertical layer of grayish white which cuts off horizontal reddish brown and grayish white color was found. The vertical layer or wedge similar to a ice-wedge or columnar structure that in a cold environment, and there is a difference in shape and size. The vertical layer appears to have occurred three or more cycles. The vertical layers begin to form at a certain height within the outcrop and descend downwards, which of course is difficult to see as directing certain times.

Characterization of the Transport of Zero-Valent Iron Nanoparticles in an Aquifer for Application of Reactive Zone Technology (반응존 공법 적용을 위한 나노영가철의 대수층 내 이동 특성에 관한 연구)

  • Kim, Cheolyong;Ahn, Jun-Young;Ngoc, Tuan Huynh;Kim, Hong-Seok;Jun, Seong-Chun;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • Characteristics of the transport of zero-valent iron nanoparticles (nZVI) in an aquifer were investigated to evaluate an application of nZVI-based reactive zone technology. Main flow direction of groundwater was north. Preferential flow paths of the groundwater identified by natural gradient tracer test were shown northeast and northwest. The highest groundwater velocity was $4.86{\times}10^{-5}$ m/s toward northwest. When the breakthrough curves obtained from the gravity injection of nZVI were compared with the tracer curves, the transport of nZVI was retarded and retardation factors were 1.17 and 1.34 at monitoring wells located on the northeast and northwest, respectively. The ratios of the amount of nZVI delivered to the amount of tracer delivered at the two wells mentioned above were 24 and 28 times greater than that of the well on the main flow direction, respectively. Attachment efficiency based on a filtration theory was $4.08{\times}10^{-2}$ along the northwest direction that was the main migration route of nZVI. Our results, compared to attachment efficiencies obtained in other studies, demonstrate that the mobility of nZVI was higher than that of results reported in previous studies, regardless of large iron particle sizes of the current study. Based on distribution of nZVI estimated by the attachment efficiency, it was found that nZVI present within 1.05 m from injection well could remove 99% of TCE within 6 months.

The Characteristics of Heavy Metal Contamination in Tailings and Soils in the Vicinity of the Palbong Mine, Korea (팔봉광산 선광광미와 주변토양의 중금속 오염 특성)

  • 이영엽;정재일;권영호
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2001
  • The characteristics of the heavy metal contamination in the soils affected by the tailings of the Palbong mine have been studied. The soils in the studied area consist mostly of loam by the particle size analysis, but a little of it, located near the stream, consist of loamy sand to sandy loam, finally to loam downward. The organic contents of soils are significantly low aoom 2 percent and the pH is in acidic ranging 6.0 $\pm$ 0.1. The samples of the parent rocks, the normal soils, the tailings and the channel deposits from the studied area were chemically analysed. From the result, the heavy metal concenlration of the soils is a little Jow compared with that of the parent rocks, shows the hydrologic process of the surface and the groundwater. The contamination of the tailings from the ore mining are high in lead, copper and arsenic. In the channel deposits the concenlrations of lead and copper are abnormally high but that of arsenic is uniquely low. And most of heavy metal contamination are decreased with the distance from the mine. It is caused by the properties of the surface and the ground water during the process of the heavy metal migration. The correlation-coefficient between sand and silt contents and the concentrations of Cd, Cu and Pb are significant but the amounts of As and Hg are increased with the clay contents. The dispersion of the heavy metals with the distance shows that the concentrations of them in the soils sampled at distance of 100 m to 200 m along the stream started near the Palbong mine are extremely high compared with those from other distances. These discrepancies are significant in Cd, Cu, Pb and Hg, but low in As. All the samples contain below detection limit of Cr+6 In the present stream water the concentrations of the heavy metals are not detected. So, it is interpreted that the concentrations in the soils are caused by the activities of the mining during the operation and have been continued by the dispersion from the tailings since after the closure of the mining, especially by the surface and ground water. The concentrations are diminished with the distance from the mining site, but in the interval of 800-2000 m increases abruptly. In the soil samples counted on the dispersion direction by wind, the lowering of the concentration is relatively uniform with the distance from the mining site. So, the rapid increase of the heavy metal concentrations is presumed to have been caused by the ground-water movement. In the migration of the heavy metals, the groundwater conditions, such as pH, Eh, the contents of colloidal particles, and Mn and Fe oxides are closely involveo. Integrating with these factors, it is interpreted that the groundwater conditions which have caused the heavy metal contamination of the studied area are those that the pH is about 3 in oxidized conditions, the contents of the colloidal particles are low, and Mn and Fe oxides are not involved in the migration of the heavy metals. Meanwhile, the vegetables growing on the soils in the studied area are not affected by the contamination of the heavy metals.

  • PDF

Estimation of Heavy Metal Contamination by PM10 Inflow Pathways while Asian Dust in Gwangju (광주지역 황사시 미세먼지 유입경로별 중금속 오염도 평가)

  • Yang, Yoon-Cheol;Lee, Se-Haeng;Park, Byoung-Hoon;Jo, Gwang-Un;Yoon, Sang-Hoon;Park, Ji-Young;Jang, Dong;Chong, Ji-hyo;Bae, Seok-Jin;Jeong, Suk-Kyoung
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • The purpose of this study is to investigate the relationship of fine dust PM10 and heavy metals in PM10 in Asian dust flowing into Gwangju from 2013 to 2018. The migration pathways of Asian dust was analyzed by backward trajectory analysis using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) model, and the change of heavy metal concentration and heavy metal content per 1 ㎍/㎥ of fine dust PM10 in Gwangju area were analyzed. Also, the characteristics of the heavy metals were analyzed using the correlation between the heavy metals in PM10. As a result of analyzing Asian dust entering the Gwangju region for 6 years, the average concentration of PM10 measured in Asian dust was 148 ㎍/㎥, which was about 4.5 times higher than in non-Asian dust, 33 ㎍/㎥. A total of 13 Asian dust flowed into the Gwangju during 6 years, and high concentration of PM10 and heavy metals in that were analyzed in the C path flowing through the Gobi/Loess Plateau-Korean Peninsula. As a result of the correlation analysis, in case of Asian dust, there was a high correlation between soil components in heavy metals, so Asian dust seems to have a large external inflow. On the other hand, in case of non-Asian dust, the correlation between find dust PM10 and artificial heavy metal components was high, indicating that the influence of industrial activities in Gwangju area was high.