• 제목/요약/키워드: Soil parameter

검색결과 714건 처리시간 0.031초

SWAT모형의 시단위 및 일단위 유출 모의성능 비교 (Comparison of Hourly and Daily SWAT Results for the Evaluation of Runoff Simulation Performance)

  • 장선숙;김성준
    • 한국농공학회논문집
    • /
    • 제58권5호
    • /
    • pp.59-69
    • /
    • 2016
  • This study aims to evaluate the Soil and Water Assessment Tool (SWAT) hourly hydrological modeling performance and compare it with daily SWAT modeling parameters. For the Byeolmicheon catchment ($1.17km^2$) located in the upstream of Gyeongancheon watershed and total 18 storm events measured during 3 years (2011-2013), the hourly SWAT was calibrated and validated using the Green and Ampt (G&A) infiltration equation. The determination coefficient ($R^2$) and Nash-Sutcliffe model efficiency (NSE) of hourly SWAT discharge were 0.81 and 0.73 respectively, and the most sensitive parameter was soil saturated hydraulic conductivity (SOL_K) and calibrated with the average value of 0.075 mm/hr. In addition, the hourly SWAT simulation by G&A was compared with the daily SWAT simulation by SCS-CN (Soil Conservation Service-Curve Number) method for the whole 3 years period. The houlrly G&A results showed $R^2$ and NSE of 0.71 and 0.50, and the daily SCS-CN results were 0.71 and 0.66, respectively. The SOL_K by daily SCS_CN method was calibrated at 75.5 mm/hr, 1,000 times greater than the hourly G&A method. The next sensitive parameters for the hourly simulation were lag time of lateral flow (LAT_TIME) and lag time of surface runoff (SURLAG).

인천 지역 준설토의 비선형 압밀특성 연구 (Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area)

  • 옥영석;안용훈;이철호;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF

A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.617-633
    • /
    • 2016
  • In this paper, the analysis of hyperbolic cooling tower on elastic subsoil exposed to unsymmetrical wind loading is presented. Modified Vlasov foundation model is used to determine the soil parameters as a function of vertical deformation profile within subsoil. The iterative parameter updating procedure involves the use of Open Application Programming Interface (OAPI) feature of SAP2000 to provide two way data flow during execution. A computing tool coded in MATLAB employing OAPI is used to perform the analysis of hyperbolic cooling tower with supporting columns over a hollow annular raft founded on elastic subsoil. The analysis of such complex soil-structure system is investigated under self-weight and unsymmetrical wind load. The response of the cooling tower on elastic subsoil is compared with that of a tower that its supporting raft foundation is treated as fixed at the base. The results show that the effect of subsoil on the behavior of cooling tower is considerable at the top and bottom of the wall as well as supporting columns and raft foundation. The application of a full-size cooling tower has demonstrated that the procedure is simple, fast and can easily be implemented in practice.

낙동강변 실트질 모래의 수리전도도와 전기적 물성과의 관계 (A Relationship between Hydraulic Conductivity and Electrical Properties of Silty Sand on the Riverside of the Nakdong River)

  • 김수동;박삼규;함세영;오윤영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.39-46
    • /
    • 2014
  • Hydraulic conductivity is an important parameter, representing permeable property of the groundwater in aquifers, in the issues of groundwater development, groundwater contamination, and groundwater flow, etc. We estimated a relationship between hydraulic conductivity and electrical properties (formation factor, chargeability, and time constant) of silty sand in the laboratory. For this study, we conducted grain size analysis, constant head permeameter test, and measured electrical resistivity and spectral induced polarization of silty sand samples collected from the riverside alluvium of the Nakdong River in Nogok-ri area, Dasan-myeon, Goryeong-gun in Gyeongbook Province, Korea. In the laboratory test, we used soil samples of approximately uniform porosity with 0.5% error range, and kept the electrical resistivity of pore water with 100 ohm-m. As a result, the relationship between effective particle size and hydraulic conductivity agrees fairly well with the existing empirical formulas. Hydraulic conductivity was correlated with formation factor, chargeability, and time constant: hydraulic conductivity increased with increasing formation factor and time constant as well as with decreasing chargeability.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

Experimental study of the effect of microstructure on the permeability of saturated soft clays

  • Chen, Bo;Sun, De'an;Jin, Pan
    • Geomechanics and Engineering
    • /
    • 제18권1호
    • /
    • pp.49-58
    • /
    • 2019
  • The effect of microstructure on the permeability of two saturated marine clays was studied through a series of falling head permeability tests and mercury intrusion porosimetry (MIP) tests. The key findings from this experimental study include the following results: (1) The permeability of undisturbed specimens is larger than that of reconstituted specimens at the same void ratio due to different soil fabrics, i.e., the pore size distributions (PSDs), even though they have the similar variation law in the permeability versus void ratio. (2) Different permeabilities of undisturbed and reconstituted specimens at the same void ratio are mainly caused by the difference in void ratio of macro-pores based on the MIP test results. (3) A high relevant relation between $C_k$ ($C_k$ is the permeability change index) and $e*_{10}$, can be found by normalizing the measured data both on undisturbed or reconstituted specimens. Hence, the reference void ratio $e*_{10}$, can be used as a reasonable parameter to identify the effect of soil fabric on the permeability of saturated soft clays.

Indirect evaluation of the shear wave velocity of clays via piezocone penetration tests

  • Vinod K., Singh;Sung-Gyo, Chung;Hyeog-Jun, Kweon
    • Geomechanics and Engineering
    • /
    • 제31권6호
    • /
    • pp.623-635
    • /
    • 2022
  • This paper presents the re-evaluation of existing piezocone penetration test (CPTu)-based shear wave velocity (Vs) equations through their application into well-documented data obtained at nine sites in six countries. The re-evaluation indicates that the existing equations are appropriate to use for any specific soil, but not for various types of clays. Existing equations were adjusted to suit all nine clays and show that the correlations between the measured and predicted Vs values tend to improve with an increasing number of parameters in the equations. An adjusted equation, which comprises a CPTu parameter and two soil properties (i.e., effective overburden stress and void ratio) with the best correlation, can be converted into a CPTu-based equation that has two CPTu parameters and depth by considering the effect of soil cementation. Then, the developed equation was verified by application to each of the nine soils and nine other worldwide clays, in which the predicted Vs values are comparable with the measured and the stochastically simulated values. Accordingly, the newly developed CPTu-based equation, which is a time-saving and economical method and can estimate Vs indirectly for any type of naturally deposited clay, is recommended for practical applications.

입도분석에 기반한 Deep Neural Network를 이용한 최대 건조 단위중량 예측 모델 평가 (Evaluation of Maximum Dry Unit Weight Prediction Model Using Deep Neural Network Based on Particle Size Analysis)

  • 김명환
    • 한국농공학회논문집
    • /
    • 제65권3호
    • /
    • pp.15-28
    • /
    • 2023
  • The compaction properties of the soil change depending on the physical properties, and are also affected by crushing of the particles. Since the particle size distribution of soil affects the engineering properties of the soil, it is necessary to analyze the material properties to understand the compaction characteristics. In this study, the size of each sieve was classified into four in the particle size analysis as a material property, and the compaction characteristics were evaluated by multiple regression and maximum dry unit weight. As a result of maximum dry unit weight prediction, multiple regression analysis showed R2 of 0.70 or more, and DNN analysis showed R2 of 0.80 or more. The reliability of the prediction result analyzed by DNN was evaluated higher than that of multiple regression, and the analysis result of DNN-T showed improved prediction results by 1.87% than DNN. The prediction of maximum dry unit weight using particle size distribution seems to be applied to evaluate the compacting state by identifying the material characteristics of roads and embankments. In addition, the particle size distribution can be used as a parameter for predicting maximum dry unit weight, and it is expected to be of great help in terms of time and cost of applying it to the compaction state evaluation.

수정 Ramberg-Osgood 모델을 이용한 널말뚝의 관입속도 예측 (Prediction of Penetration Rate of Sheet Pile Using Modified Ramberg-Osgood Model)

  • 이승현;김병일;김주철;김정환
    • 한국지반공학회논문집
    • /
    • 제26권1호
    • /
    • pp.55-62
    • /
    • 2010
  • 진동타입기에 의해 시공되는 강널말뚝의 관입속도를 예측하고자 수정 Ramberg-Osgood 모델을 적용하여 진동타입기의 주기운동에 따른 지반의 동적 저항력을 모사하고자 하였다. 수정 Ramberg-Osgood 모델을 규정짓는 다양한 인자는 현장시험을 통해 구한 동적 지반저항력곡선의 양상을 반영하여 결정하였는데 이때 매개변수로는 표준관입시험값(N값)을 이용하였다. 관입속도는 해석결과가 현장시험결과에 비해 작게 계산되었으며 관입깊이에 따른 관입 소요시간은 해석결과가 현장시험결과에 비해 크게 계산되어 해석결과가 현장시험결과에 비해 보수적인 값을 보여주었다.

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran;Youngkyu Cho;Hwanwoo Seo;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.341-380
    • /
    • 2023
  • This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.