• Title/Summary/Keyword: Soil parameter

Search Result 714, Processing Time 0.031 seconds

The Characteristics of Bioremediation for VOCs in Soil Column (VOCs처리를 위한 미생물의 토양복원화 특성)

  • 손종렬;장명배
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.9-12
    • /
    • 2002
  • Diffusive transport of volatile organic compounds(VOCs) and their degradation by bacteria in unsaturated soils are couple by poorly understood mass transfer kinetics at the gas/water interface. Determination of the fate of VOCs in unsaturated soil is necessary to evaluate the feasibility of natural attenuation as a VOC remediation strategy. The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOC transport, microbial activity, and sorptive interaction in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOC transport that is induced in engineered remediation processes such as vapor extraction was not considered. The utility of the model was assessed through its ability to describe experimental observations form diffusion experiments using toluene as a representative VOC in well-defined soil columns that contained a toluene degrading bacterium, Pseudomonas Putida, as the sole active microbial species. The coefficient for gas-liquid mass-transfer, K$\sub$LA/, was found to be a key parameter controlling the ability of bacteria to degrade VOCs. This finding indicates that soil size and geometry are likely to be important parameters in assessing the possible success of natural attenuation of VOCs in contaminated unsaturated soils.

  • PDF

The Characteristics of Biodegradation for VOCs in Unsaturated Soil by Bio-filter (Bio-filter에 의한 토양중의 VOCs 분해특성)

  • Sohn Jong-Ryeul;Jang Myung-Bae;Cho Kwang-Myung
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.19-24
    • /
    • 2004
  • The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOCs transport, microbial activity, and sorptive interactions in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOCs transport that is induced in engineered remediation processes such as vapor extraction was not considered. The utility of the model was assessed through its ability to describe experimental observations from diffusion experiments using toluene as a representative VOCs in well-defined soil columns that contained a toluene degrading bacterium, Pseudomonas putida G7 md Fl, as the sole active microbial species. The gas-liquid mass-transfer was found to be a key parameter controlling the ability of bacteria to degrade VOCs. This finding indicates that soil size and geometry are likely to be important parameters in assessing the possible success of natural attenuation of VOCs in contaminated unsaturated soils. Therefore we found that Pseudomonas putida G7 and Fl were very effective to remove of refractory pollutants such as toluene in soil by Bio-filter

Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement

  • Yang, X.L.;Wang, H.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.621-630
    • /
    • 2018
  • In the note a comprehensive and optimal passive-active mode for describing the limit failure of circular shallow tunnel with settlement is put forward to predict the catastrophic stability during the geotechnical construction. Since the surrounding soil mass around tunnel roof is not homogeneous, with tools of variation calculus, several different curve functions which depict several failure shapes in different soil layers are obtained using virtual work formulae. By making reference to the simple-form of Power-law failure criteria based on numerous experiments, a numerical procedure with consideration of combination of upper bound theorem and stochastic medium theory is applied to the optimal analysis of shallow-buried tunnel failure. With help of functional catastrophe theory, this work presented a more accurate and optimal failure profile compared with previous work. Lastly the note discusses different effects of parameters in new yield rule and soil mechanical coefficients on failure mechanisms. The scope of failure block becomes smaller with increase of the parameter A and the range of failure soil mass tends to decrease with decrease of unit weight of the soil and tunnel radius, which verifies the geomechanics and practical case in engineering.

The probabilistic Analysis of Degree of Consolidation by Spatial Variability of Cv (압밀계수의 공간변동성에 따른 압밀도의 확률론적 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.55-63
    • /
    • 2012
  • Soil properties are not random values which is represented by mean and standard deviation but show spatial correlation. Especially, soils are highly variable in their properties and rarely homogeneous. Thus, the accuracy and reliability of probabilistic analysis results is decreased when using only one random variable as design parameter. In this paper, to consider spatial variability of soil property, one-dimensional random fields of coefficient of consolidation ($C_v$) were generated based on a Karhunen-Loeve expansion. A Latin hypercube Monte Calro simulation coupled with finite difference method for Terzaghi's one dimensional consolidation theory was then used to probabilistic analysis. The results show that the failure probability is smaller when consider spatial variability of $C_v$ than not considered and the failure probability increased when the autocorrelation distance increased. Thus, the uncertainty of soil can be overestimated when spatial variability of soil property is not considered, and therefore, to perform a more accurate probabilistic analysis, spatial variability of soil property needed to be considered.

A Study on the Estimation of Soil Formation Thermal Conductivities and Borehole Resistances with One-Dimensional Numerical Model and In-Situ Field Tests (1차원 수치모델과 현지측정에 의한 지중열전도율 및 보어홀 전열저항 해석에 관한 연구)

  • Lee Se-Kyoun;Woo Joung-Son;Ro Jeong-Geun;Kim Dae-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.783-790
    • /
    • 2006
  • A one-dimensional numerical model coupled with parameter estimation is used to predict the effective thermal conductivities of soil formations and borehole resistances from in situ field test data. In this application a new method of using initial ignoring time (IIT) obtained from error estimation is tried and turned out to be successful in determining soil thermal conductivities. This method is used for single-U and double-U borehole system. The results of this method are compared and agreed well with those of existing software (GPM) in the analysis of single-U borehole data. In the analysis of double-U borehole data this method seems to be better in predicting soil and borehole properties.

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

Soil vibration induced by railway traffic around a pile under the inclined bedrock condition

  • Ding, Xuanming;Qu, Liming;Yang, Jinchuan;Wang, Chenglong
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.143-156
    • /
    • 2021
  • Rail transit lines usually pass through many complicated topographies in mountain areas. The influence of inclined bedrock on the train-induced soil vibration response was investigated. Model tests were conducted to comparatively analyze the vibration attenuation under inclined bedrock and horizontal bedrock conditions. A three-dimension numerical model was built to make parameter analysis. The results show that under the horizontal bedrock condition, the peak velocity in different directions was almost the same, while it obviously changed under the inclined bedrock condition. Further, the peak velocity under inclined bedrock condition had a larger value. The peak velocity first increased and then decreased with depth, and the trend of the curve of vibration attenuation with depth presented as a quadratic parabola. The terrain conditions had a significant influence on the vibration responses, and the inclined soil surface mainly affected the shallow soil. The influence of the dip angle of bedrock on the peak velocity and vibration attenuation was related to the directions of the ground surface. As the soil thickness increased, the peak velocity decreased, and as it reached 173% of the embedded pile length, the influence of the inclined bedrock could be neglected.

Vertical load on a conduit buried under a sloping ground

  • Khan, Muhammad U.A.;Shukla, Sanjay K.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.599-610
    • /
    • 2021
  • Conduits are commonly installed below the ground for utility conveyance around the world. Vertical load on a buried conduit is an important parameter that needs to be known to ensure its safe design and installation. Consideration of soil arching in load calculations helps achieve a more realistic and efficient design. In the past, considering the arching effect, the design charts have been presented for use by practicing engineers to calculate the vertical load on the conduit buried below the level ground. There are currently no design charts for calculating the vertical load on the conduit buried under a sloping ground. In this paper, an attempt has been made to present the derivation of a generalized analytical expression considering that the soil mass overlying the conduit has a sloping face and the arching phenomenon takes place. The developed generalized expression has been used to present some design charts considering specific values of slope geometry, soil properties and burial depths. Furthermore, analytical results for specific soil parameters have been compared with the results extracted from a commercial software PLAXIS 2D, for a developed numerical model and an independent study.

Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil (인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용)

  • Hur, Seung-Oh;Jeon, Sang-Ho;Han, Kyung-Hwa;Jo, Hee-Rae;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.823-827
    • /
    • 2010
  • This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.

Evaluation of satellite-based soil moisture retrieval over the korean peninsula : using AMSR2 LPRM algorithm and ground measurement data (위성기반 토양수분 자료의 한반도 지역 적용성 평가: AMSR2 LPRM 알고리즘과 지점관측 자료를 이용하여)

  • Kim, Seongkyun;Kim, Hyunglok;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.423-429
    • /
    • 2016
  • This study aims at assessing the quality of the Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture products onboard GCOM-W1 satellite based on Land Parameter Retrieval Model (LPRM) soil moisture retrieval algorithm with field measurements in South Korea from March to September, 2014. Results of mean bias and root mean square error between AMSR2 LPRM soil moisture products (X-band) and ground measurements showed reasonable value of 0.03 and 0.16. Also, the maximum of the Pearson correlation coefficients was 0.67, which showed good agreement in terms of temporal variability with ground measurements. By comparing AMSR2 soil moisture with in-situ measurement according to the overpass time and band frequency, X-band products on the ascending time outperformed than those of C1-band and C2-band. Furthermore, this study offers an insight into the applicability of the AMSR2 soil moisture products for monitoring various natural disasters at a large scale such as drought and flood.