• Title/Summary/Keyword: Soil nonlinearity

Search Result 92, Processing Time 0.019 seconds

Prediction of Soil Deformation with Nonlinear-Anisotropic Model (비선형 이방성 모델을 이용한 흙의 변형 거동 예측)

  • 윤충구;정영훈;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.41-48
    • /
    • 2002
  • The fact that nonlinearity and anisotropy of soil should be considered for the proper estimation of soil deformation has been recongnized for a long time. In this study, a new stiffness model which can reflect both nonlinearity and anisotropy is proposed. Nonlinearity is simulated by Ramberg-Osgood model and anisotropy is modeled with the cross-anisotropic elasticity. Analysis results with the developed model compared with those from analyses using linear isotropic model, linear anisotropic model, and nonlinear isotropic model. In the triaxial compression like condition, the effects of nonlinearity on the vertical strain are significant, but soil anisotropy does not affect the vertical strain. In 1-dimensional deformation condition, however, both nonlinearity and anisotropy of soil influence the final magnitude of the vertical strain. Also the increase of poisson's ratio magnifies the effect of anisotropy on the vertical strain in this condition.

  • PDF

Earthquake Response Analysis of Bridges with Soil-Structure Interaction and Pier Nonlinearity (지반-구조물 상호작용과 교각의 비선형성을 고려한 교량의 지진응답해석)

  • 이종세;최준성;권오신
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.415-421
    • /
    • 2003
  • With the increasing possibility of earthquake occurrence, seismic safety of bridges has become one of the most important social issues in Korea. In this study, a nonlinear earthquake response analysis is carried out for a real bridge by incorporating soil-structure interaction and pier nonlinearity. The material nonlinearity of the bridge pier is realized by utilizing SAP2000 whereas the soil-structure interaction is analized in time domain by adapting KIESSI. The numerical results are compared to those of the models without considering the effects.

  • PDF

Numerical Analysis of Anisotropic Soil Deformation by the Nonlinear Anisotropic Model (흙의 변형 거동 예측을 위한 비선형 이방성 모델의 개발과 적용)

  • 정충기;정영훈;윤충구
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.237-249
    • /
    • 2002
  • Nonlinearity and anisotropy of soil should be considered for the exact prediction of deformation before the failure state. In this study, a new constitutive model is developed in which the nonlinearity of soil is formulated by Ramberg-Osgood equation and the soil anisotropy is implemented by the cross-anisotropic elasticity. Nonlinear anisotropic model and other models for comparison are used to analyze the simple boundary value problems and the circular footing problem. In the results, the anisotropic ratio of elastic modulus is a key value for the bulk modulus of soil, the coeffcient of earth pressure at rest, and the slope of effective stress paths. Furthermore, it is found that the nonlinearity of soil considering the in-situ stresses has the great influence on the magnitude of settlements.

Effects of Soil Nonlinearity Characteristics on the Seismic Response of KNGRStructures (지반의 비선형 특성이 차세대원전 구조물의 지진응답에 미치는 영향)

  • 장영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.137-146
    • /
    • 1999
  • The SSI(Soil-Structure Interaction) analyses are being performed for the KNGR(Korean Next Generation Reactor) design because the KNGR is developed as a standard nuclear power plant concept enveloping various soil conditions. the SASSI program which adopts the flexible volume method is used for the SSI analyses. The soil curves used in the three dimensional SSI analyses of KNGR Nuclear Island(NI) structures are based on the upper bound shear modulus curve and lower bound damping degradation on SSI response the average shear modulus curve with average damping curve was used for two soil cases. This study presents the results of the variances by using different soil nonlinearity parameters based on the paametric SSI analyses. The results include the maximum member forces(shear and axial force) at the base of the NI structures and the 5% damping Floor Response Spectra (FRS) at some representative locations at the top of the NI superstructures. They are also compared together with the enveloped SSI results for eight soil cases and fixed-base analysis for rock case by using two control motions.

  • PDF

Soil-Structure Interaction Analysis Method in Time Domain considering Near-Field Nonlinearity (근역지반의 비선형성을 고려한 시간영역 지반-구조물 상호작용 해석기법의 개발)

  • 김문겸;임윤묵;김태욱;박정열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.309-314
    • /
    • 2001
  • In this study, the nonlinear soil structure interaction analysis method based on finite element and boundary element method is developed. In the seismic region, the nonlinearity of near field soil has to be considered for more exact reflection of soil-structure interaction effect. Thus, nonlinear finite element program coupled with boundary elements is developed for nonlinear soil-structure interaction analysis. Using the developed numerical algorithm, the nonlinear soil-structure interaction analysis is performed and responses due to dynamic forces and seismic excitation are investigated. The developed method is verified by comparing with previous studies.

  • PDF

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.

Effect of the Nonlinearity of the Soft Soil on the Elastic and Inelastic Seismic Response Spectra (연약지반의 비선형성이 탄성 및 비탄성 지진응답스펙트럼에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.11-18
    • /
    • 2005
  • Inelastic seismic analysis is necessary for the seismic design due to the nonlinear behavior of a structure-soil system, and the importance of the performance based design considering the soil-structure interaction is recognized for the reasonable seismic design. In this study, elastic and inelastic seismic response analyses of a single degree of freedom system on the soft soil layer were peformed considering the nonlinearity of the soil for the 11 weak or moderate, and 5 strong earthquakes scaled to the nominal peak acceleration of 0.075g, 0.15g, 0.2g and 0.3g. Seismic response analyses for the structure-soil system were peformed in one step applying the earthquake motions to the bedrock In the frequency domain, using a pseudo 3-D dynamic analysis software. Study results indicate that it is necessary to consider the nonlinear soil-structure interaction effects and to perform the performance based seismic design for the various soil layers rather than to follow the routine procedures specified in the seismic design codes. Nonlinearity of the soft soil excited with the weak earthquakes also affected significantly to the elastic and inelastic responses due to the nonlinear soil amplification of the earthquake motions, and it was pronounced especially for the elastic ones.

Significance of nonlinear permeability in the coupled-numerical analysis of tunnelling

  • Kim, Kang-Hyun;Kim, Ho-Jong;Jeong, Jae-Ho;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • The inflow rate is of interest in the design of underground structures such as tunnels and buried pipes below the groundwater table. Soil permeability governing the inflow rate significantly affects the hydro-geological behavior of soils but is difficult to estimate due to its wide range of distribution, nonlinearity and anisotropy. Volume changes induced by stress can cause nonlinear stress-strain behavior, resulting in corresponding permeability changes. In this paper, the nonlinearity and anisotropy of permeability are investigated by conducting Rowe cell tests, and a nonlinear permeability model considering anisotropy was proposed. Model modification and parameter evaluation for field application were also addressed. Significance of nonlinear permeability was illustrated by carrying out numerical analysis of a tunnel. It is highlighted that the effect of nonlinear permeability is significant in soils of which volume change is considerable, and particularly appears in the short-term flow behavior.

Seismic Vulnerabilities of a Multi-Span Continuous Bridge Considering the Nonlinearity of the Soil (지반 비선형성을 고려한 다경간 연속교의 지진취약도)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.59-68
    • /
    • 2010
  • Seismic performances of existing structures should be assessed with more accuracy for cost-effective retrofits. Existing bridges are assessed by the current guidelines in which a simple method has been adapted considering the technical level of engineers of the historical time of construction. Recently many probabilistic approaches have been performed to reflect the uncertainties of seismic input motions. Structures are modeled frequently with the neglection of soil foundations or modeled occasionally with elastic soil spring elements to consider the effect of the soil on the structural response. However, soil also shows nonlinearity under seismic events, so this characteristic should be reflected in order to obtain a more accurate assessment. In this study, a 6-span continuous bridge has been analyzed under various seismic events, in which the soil was represented by equivalent linear spring elements having different properties according to the intensities of the input motions experienced. The seismic vulnerabilities with respect to the failure of piers and the dropping of the super-structure were evaluated on the basis of the analysis results.

Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model

  • Khazaei, Jahangir;Amiri, Azadeh;Khalilpour, Mehrdad
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.251-262
    • /
    • 2017
  • The present research intends to study the effects of the seismic soil-foundation-structure interaction (SFSI) on the dynamic response of various buildings. Two methods including direct and Cone model were studied through 3D finite element method using ABAQUS software. Cone model as an approximate method to consider the SFSI phenomenon was developed and evaluated for both high and low rise buildings. Effect of soil nonlinearity, foundation rigidity and embedment as well as friction coefficient between soil-foundation interfaces during seismic excitation are investigated. Validity and performance of both approaches are evaluated as reference graphs for Cone model and infinite boundary condition, soil nonlinearity and amplification factor for direct method. A series of calculations by DeepSoil for inverse earthquake record modification was conducted. A comparison of the two methods was carried out by root-mean-square-deviation (RMSD) tool for maximum lateral displacement and story shear forces which verifies that Cone model results have good agreement with direct method. It was concluded that Cone method is a convenient, fast and rather accurate method as an approximate way to count for soil media.