• Title/Summary/Keyword: Soil nitrogen

Search Result 2,409, Processing Time 0.026 seconds

The Effects of Nitrogen Fertilizers and Cultural Patterns on Methane Emission From Rice Paddy Fields (논토양에서 질소비종 및 벼 재배양식이 메탄가스 발생에 미치는 영향)

  • Ko, Jee-Yeon;Kang, Hang-Won;Kang, Ui-Gum;Park, Hang-Mee;Lim, Dong-Kuy;Park, Kyeng-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.227-233
    • /
    • 1998
  • To mitigate the methane emission from rice paddy fields, effects of nitrogen fertilizers source and cultural patterns were evaluated on silty loam soils. And a pot experiment was carried out to find out the effects of nitrogen fertilizers on soil pH, Eh, sulfate concentration of soil water in flooded soil. In transplanting cultivation, the total methane emission depending on fertilizers was $32.9gm^{-2}$ for urea ; $30.3gm^{-2}$ for ammonium sulfate ; $26.4gm^{-2}$ for coated urea. Methane emitted in direct seeding on dry soil was $24.7gm^{-2}$ for urea ; $16.7gm^{-2}$ for ammonium sulfate : and $22.8gm^{-2}$ for coated urea. Thus, the methane emission rate of direct seeding on dry soil was 29.7% lower than transplanting. According to the nitrogen fertilizers, the methane emission rate by ammonium sulfate and coated urea were reduced 18.4 and 15.9% in comparison with urea, respectively. In pot experiments, pH in flooded soils depending on nitrogen fertilizers dereased in order of urea > coated $urea{\fallingdotseq}no$ fertilizer > ammonium sulfate and the order was coincided with that of total $CH_4$ emission from flooded soil. Soil Eh was highest in ammonium sulfate application followed by coated urea, no fertilizer, urea. And sulfate concentrations of soil water were in order of ammonium sulfate > coated urea > urea > no fertilizer.

  • PDF

Mineralization of Nitrogen in Soils under Paddy-Upland Switching Cultivation Systems (답전윤환토양(沓田輪換土壤)에서 질소무기화(窒素無機化)의 특성(特性)에 관(關)한 연구)

  • Ahn, Sang-Bae;Motomatsu, T.;Yeon, Beong-Yeal;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.133-137
    • /
    • 1992
  • The rate and pattern of soil nitrogen mineralization were investigated under conditions of a paddy-upland switching cultivation system. Experimental results obtained are as follows 1. Amounts of soil nitrogen mineralized were different in the order of potato-cabbage>soybean>continuous paddy plot for the first year, but potato-cabbage>continuous paddy>soybean plot for the second year, respectively. 2. In the third year cropping under upland condition a higher amount of soil nitrogen was found mineralized at the plot of continuous upland cultivation than at the alternate paddy-upland switching plot in the case of potato-cabbage, on the contrary, however, the higher amount was found at the alternate paddy-upland switching plot in the case of soybean cultivation. 3. The amounts of total soil nitrogen and carbon were lower in paddy-upland switching plots than in continuous paddy plots. This trend is significant in soybean plots. 4. A positive correlationship was found between phosphate buffer solution method for available nitrogen and submerged soil method for $NH_4-N$, both being utilized for the estimation of soil fertility.

  • PDF

Nitrogen Mineralization and Dynamics in the Forest Soil (삼림토양의 질소 무기화와 무기질소의 동태)

  • Mun, Hyeong-Tae
    • The Korean Journal of Ecology
    • /
    • v.14 no.3
    • /
    • pp.317-325
    • /
    • 1991
  • Mineral nitrogen dynamics and net mineralization of nitrogen in oak(quercus accutissima) and pine(pinus rigida) forest soils were studied. Nitrogen mineralization was determined over 8-week period by incubation method at laboratory. Initial water content of incubating soils was adjusted by applying suction(30mmhg), and lossof water during incubation was recovered with deionized water using syringe at every 3 or 4days. Temperature of incubator was maintained with 35+0.3c during the incubation period. Content of organic matter, total nitrogen, nh4-n and no3-n in soils in oak stand were significantly highter than those in pine stand. soil ph was lower in pine stand than in oak stand. initial nh4-n and no3-n of soils used in incubation experiment were 12.6 ug/g and 6.5 ug/g for oak stand, and 5.3ug/g and 5.1 ug/g for pine stand, respectively. Production of nh4-n increased from the beginning st both stands, and showed a peak at 5th week in oak stand(28.5 ug/g) and 6th week in pine stand(16.7 ug/g), and then decreased. intial no3-n of soils in oak(6.5 ug/g) and pine(5.1ug/g)stands, increased to 36.2 ug/g in soils of oak stand(5th week) and 13.4 ug/g in pine stand(4th week), respectively. The low values of no3-n of the field soil in the growing season compared with those of incubating soils at both stands indicate that considerable amount of nh4-n and no3-n produced in soils of oak and pine stands during two-months incubation were 59.7 and 141.6mg/kg soil, and 51.9 and 41.2mg/kg soil, respectively.

  • PDF

Nitrogen Fertilization on the Growth of Rape (Brassica napus L.) in Newly Reclaimed Land in Korea

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Lee, Jang-Hee;Jung, Jae-Hyeok;Lee, Yong-Hwa;Kim, Si-Ju;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.597-599
    • /
    • 2011
  • This study was conducted to find out the optimum nitrogen application rate for the stable production of rape in the newly reclaimed land located at Gangwhal region of Saemangum reclaimed land in which the soil is sandy loam (Munpo series). There were five treatments of nitrogen fertilization from zero to 60% increment based on the standard fertilization of $150kg\;ha^{-1}$. The growth of rape (Sunmang) was not affected by salt content while soil salinity was increased at blossoming season of rape. Compared to yield of standard fertilization the yield and the content of oleic acid of rape were increased by 4~26% with the increasing additional nitrogen fertilizer. The results obtained from the growth and yield of rape in this study indicated that it was possible to cultivate rape in a newly reclaimed land if soil salinity was kept below $3dS\;m^{-1}$.

The Effect of Soil Textures on the Flowering characteristics and Green Manure Yield of Crimson Clover (Trifolium incarnatum L.) in Upland Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Park, Tea-Sun;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.705-711
    • /
    • 2016
  • Crimson clover, a legume crop, is a landscape crop and green manure crop that can be sowing in spring and autumn. Its red flower blooms in May, and serves various roles such as landscape composition, weeds suppressing, prevention of soil loss and nutrient on sloping land and supplying nitrogen and organic matter in soil. Thus, in order to utilize this crop in agriculture land, we evaluated the growth characteristics of crimson clover cultivated in four different soil textures; sand, sandy loam, loam, and clay loam. The nitrogen content of crimson clover was $15.8g\;kg^{-1}$ and C/N ratio was 20.3. Its plant height was 42.5 cm in sandy loam and 49.5 cm in loamy, respectively, approximately 20 cm longer than the sand and clay loam. The crimson clover in sandy loam and loam bloomed about seven days earlier than those in sand and clay loam. Regarding number of flower per hill and flower length, there were no difference among the soil textures. Dry weight of crimson clover for sandy loam and loam was $2.5Mg\;ha^{-1}$ and $2.3Mg\;ha^{-1}$, respectively, $0.8{\sim}1.1Mg\;ha^{-1}$ higher than that of sand and sandy loam. Plant height and dry weight of crimson clover increased with delaying harvest time. Nitrogen contribution in loam and clay loam was $51.3kg\;ha^{-1}$ and $53.5kg\;ha^{-1}$, respectively. Therefore, in terms of flowering properties and dry weight, the proper soil texture for the growth and development of crimson clover was sandy loam and loam.

Growth Response of Zoysiagrass (Zoysia japonica Steud.) as Affected by Nitrogen Fertilizer Application Rate (질소비료 시비량에 따른 들잔디의 생육반응)

  • Bae, Eun-Ji;Han, Jeong-Ji;Lee, Kwang-Soo;Park, Yong-Bae;Choi, Su-Min
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.397-404
    • /
    • 2015
  • This study was conducted to find out the optimum nitrogen fertilization for production of good quality and high yield zoysiagrass (Zoysia japonica Steud.), the changes in chemical properties of soil in pot and field experiments treated with different levels of nitrogen fertilizer. In pot experiment, the fresh and dry weights of shoots and stolons and the number of shoots increased as nitrogen levels increased, and showed no significant between 24 and $48kg\;N\;10\;a^{-1}$. In field experiment, the shoot length, fresh and dry weights of shoots, roots and stolons, the number of shoots and total stolons length linearly increased as affected by increased nitrogen application, and were not significantly different between 24 and $32kg\;N\;10\;a^{-1}$. In both experiments, pH and exchangeable cations ($Ca^{2+}$ and $Mg^{2+}$) in soil decreased as the rate of nitrogen application increased. As a results, chemical properties of soil were more deteriorated in the plots of higher nitrogen fertilizer rate. Thus, these results demonstrated that the nitrogen fertilizer rate for maximum growth of zoysiagrass was $24kg\;N\;10\;a^{-1}$ in consideration of growth and soil condition.

Response of Old-field Plant Community to an Experimental Nitrogen Gradient (질소 시비 구배에 따른 묵밭의 식물 군집 반응)

  • Lee, Kyu-Song;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.4
    • /
    • pp.341-351
    • /
    • 1996
  • In order to elucidate the differences in early successional development among similary aged old-fields having different soil nitrogen (N), caused by the land use history before at abandonment, the response of plant community along an experimental nitrogen gradient (control plot (No), plot NI with 5.8g $N/m^2$, plot N2 with 11.7g $N/m^2$ and plot N3 with 23.3g $N/m^2$) was investigated in a five-year-old abandoned field. Although the N content in soil among treatments was similar at the end of the growing season, N concentrations in plant tissue increased with the amount of N supplied. These results suggest that almost all the N contained in N-enriched soil might be absorbed by plants during the growing season after N supply. Vegetation tended to grow vigorously by nitrogen supply, and the standing biomass increased significantly in plots NI and N2 . Species richness of plants, especially of annuals and perennials, was more reduced than the control plot, and the species diversity was also reduced by N supply. The importance value (IV) of species by N supply differed in each species along the position on the successional sere: Artemisia princeps var. orientalis as the dominant species in this old-field decreased slightly; annuals as the earlier successional species decreased clearly along nitrogen gardients; Erigeron annuals as the earlier successional species and as a strong competitor with Artemisia princeps var. orientalis had the highest IV by small N supply; Miscanthus sinensis and Rubus crataegifolius as the later successional species increased by large N supply. These results suggest that old-fields with high soil N might show the structural and functional characteristics of the earlier successional stages, but community composition in those old-fields might be changed more quickly from the sarlier successional species than the later successional species.

  • PDF

Mulberry Growth Promotion by Nitrogen Application under Abnormally Wet and Cool Weather Conditions (하추기 이상 저온하에서 뽕나무 발육부진요인과 추비에 의한 생육증진)

  • 이원주;윤명근
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.110-114
    • /
    • 1994
  • Abnormally cool and wet weather conditions during the summer of 1993 offered an opportunity to evaluate the effects of abnormal weather conditions on mulberry growth and to develop cultivation practicies to reduce leaf yield loss under the similar abnormal weather conditions. Different methods of nutrient supplementation were evaluated in Suwon and Kongju. Nitrogen was supplemented by foliar spray of urea(1.7%) or composite chemical fertilizer Jamsibiryo #8, or by the application of ammonium sulfate(60kg/ha) to the soil. During the period between the late June and the early September which corresponds to the mulberry growing season after summer pruning, mean temperature was 1.4$^{\circ}C$ lower and precipitation 83mm higher than normal year. This weather condition in 1993 caused reduction in leaf yield by 16.4% than common year. Soil nitrogen content decreased due to higher precipitation. Leaf yield loss was reduced by the supplementation of nitrogen to the soil. Leaf nitrogen content increased with the foliar urea spray and nitrogen supplementation to the soil.

  • PDF

Effects of Inoculation of Rhizobium and Arbuscular Mycorrhiza, Poultry litter, Nitrogen, and Phosphorus on Growth and Yield in Chickpea

  • Solaiman A. R. M.;Rabbani M. G.;Molla M. N.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The experiment was conducted at the Ban­gabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur to study the response of chickpea (Cicer arietinum L) to dual inoculation of Rhizobium and arbuscular mycorrhiza, poultry litter, nitrogen, and phosphorus on spore population and colonization, nodulation, growth, yield attributes, and yield. The performance of Rhizobium inoculant alone was superior to control in all the parameters of the crop studied. Among the treatments dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter performed best in recording number and dry weight of nodules, dry weight of shoots and roots, number of pods/plant, number of seeds/pod, and seed yields of chickpea. The highest seed yield of 3.96g/plant was obtained by inoculating chickpea plants with dual inoculation of Rhizobium and arbuscular mycorrhiza in association with poultry litter. Treatments receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of nitrogen and phosphorus, Rhizobium inoculant in presence of nitrogen and phosphorus, and that of arbuscular mycorrhiza in presence of nitrogen and phosphorus were similar as that of treatment receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter. From the view point of nodulation, growth, yield attributes, and yields of chickpea, dual inoculation of Rhizobium inoculant and arbuscular mycorrhiza along with poultry litter was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Effects of Nitrogen Fertilization Rate at Different Nursery Soils on Seedling Characters and Endosperm Consumption in Rice Seedling (상토 종류별 질소시비량이 벼 어린모 묘소질 및 배아양분 소모에 미치는 영향)

  • Kim, Sang-Su;Choi, Min-Gue;Lee, Seong-Yong;Yoo, Chul-Hyun;Cho, Soo-Yeon;Jun, Byung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.514-520
    • /
    • 1996
  • To clarify the proper nitrogen application level for rasing rice infant seedling under different nursery soil, Dongjinbyeo was raised at seedling box with different basal nitrogen level. The results are as follows. The higher the nitrogen level was, the lower emergence rate and the lower establishment rate. The establishment rate was less than 90%, when the nitrogen was more than 2g/box in hill soil and more than 1g/box in paddy soil. The more the nitrogen level was, the higher the seedling height in hill soil, but was higher in the order of N-2, 3, 1 and 0g /box. Leaf number wasn't significantly different between nusery soils and among nitrogen levels when seedling was raised more than 6 days. The endosperm survival rate was decreased as the increased nitrogen level, but wasn't different between the nursery soils. Amount of root was decreased as the increased nitrogen level in paddy soil, but was heavier in the order of N-1, 0, 2 and 3g /box in hill soil. Mat formation was better as the nitrogen level was decreased in all nursery soils. Considering the emergence rate, seedling charactors and mat formation, the proper nitrogen levels seemed to be 2g /box for hill soil and 1g /box for paddy soil.

  • PDF