• Title/Summary/Keyword: Soil nitrogen

Search Result 2,409, Processing Time 0.021 seconds

Nitrogen Budget of South Korea Including Gaseous Nitrogen Oxides from 2012 to 2014 (기체상 질소산화물을 포함한 2012~2014년도 대한민국 질소수지 연구)

  • Lee, Hanuk;Oa, Seyeon;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.49-59
    • /
    • 2017
  • This study estimated the nitrogen budget, including gaseous nitrogen oxides ($NO_x$), of South Korea in 2012~2014. The nitrogen budget was classified into three categories: agricultural and livestock, forest, and city. To estimate the nitrogen budget, several input and output parameters were investigated, including deposition, fixation, irrigation, chemical fertilizer use, compost, fuel, denitrification, volatilization, runoff, crop uptake, leaching, and $NO_x$ emissions. The annual nitrogen inputs from 2012 to 2014 were 6,202,828, 6,137,708, and 6,022,379 ton/yr, respectively. The corresponding annual nitrogen outputs were 1,393,763, 1,380,406, and 1,360,819 ton/yr, respectively, signifying a slight decrease from 2012 to 2014. $NO_x$ was the parameter contributing to the nitrogen budget to the greatest extent. The annual ratios of $NO_x$ emissions by vehicles, power plants, and businesses were 0.31, 0.31, and 0.30 in 2012, 2013, and 2014, respectively. A change in government policy that prohibited the disposal of livestock manure and sewage sludge in the ocean from 2012 affected nitrogen budget profile. As a result, the ocean disposal ratio completely diminished, which differs from previous studies.

Evaluation of Potentially Available Soil Nitrogen by Using Buffer Phosphote Solution of pH7 (답토양(畓土壤)의 인산완형액(燐酸緩衡液)에 의(依)한 지력질소(地力窒素) 평가(評價)에 관(關)한 연구(硏究))

  • Ahn, Sang-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.327-332
    • /
    • 1986
  • Laboratory experiments were conducted to estimate extractable nitrogen by buffer phosphate solution of pH 7. A series of experiment soils were a) Sandy soil applied with compost, lime, and Wallastonite every years for 32 years. b) Sandy soils with and without waterlogging for 70 days before transplanting. c) Normal soils produced high and common yields. The results were summarized as follows: 1. Extractable organic nitrogen by pH 7 phosphate buffer solution was increased in order of NPK + compost > NPK > NPK + compost + lime + Wollast-onite > NPK + compost + lime > NPK + wollastonite > no fertilizer plot. 2. Extractable organic nitrogens at plots of NPK and NPK + compost were decreased as the growth stage processed regardless of tretments. 3. In case of normal soils having high and common yields the content of total N, organic matter and $NH_4-N$ were increased in high productive soil, while, only $NO_3-N$ content was increased in common productive soil. Especially, there was a highly positive correlation between extractable total nitrogen and $NH_4-N$ content submerged for 4 weeks under incubated condition. 4. Organic nitrogen content of soil was increased on the condition of non-waterlogging, however, nitrogen uptake by rice plant was increased in waterlogged paddy. 5. The content of extractable total nitrogen increased in the order of normal soil, sandy soil, unmatured soil, saline soil, and estimation of optimum nitrogen rates by extracted organic nitrogen was in order of saline soil, unmatured soil, sandy soil, normal soil.

  • PDF

Effect of seeding rate of Crotalaria (Crotalaria juncea L.) on Green Manure Yield and Nitrogen Prodution in Upland Soil

  • Cho, Hyeoun-Suk;Seong, Ki-Yeung;Park, Tea-Sun;Seo, Myung-Chul;Kim, Mi-Hyang;Kang, Hang-Won;Lee, Hye-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.445-451
    • /
    • 2013
  • We researched nitrogen and green manure yield of crotalaria by seeding rate; 50, 60, 70, 80, 90 kg $ha^{-1}$ in upland soil to find out crotalaria's optimal seeding rate. Crotalaria's plant height and number of leaves increased when the harvest time was later regardless of its seeding rate. Its nitrogen content of above-ground part was 19.8 g $ha^{-1}$, and C/N ratio was 22.5. The highest nitrogen content (50.3 g $ha^{-1}$) was found in flowers part, followed by its leaves, roots and stems. The green manure yields of crotalaria increased when the harvest time was later. The green manure yield of crotalaria was biggest in 50kg $ha^{-1}$ which was low in seeding rate. It tended to decrease when the seeding rate was higher, and the nitrogen yield had the same tendency. Therefore, the appropriate seeding rate was 50kg $ha^{-1}$ and the time for application to soil was considered to be the flowering stage.

Effects of thinning intensity on nutrient concentration and enzyme activity in Larix kaempferi forest soils

  • Kim, Seongjun;Han, Seung Hyun;Li, Guanlin;Yoon, Tae Kyung;Lee, Sang-Tae;Kim, Choonsig;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.5-11
    • /
    • 2016
  • Background: As the decomposition of lignocellulosic compounds is a rate-limiting stage in the nutrient mineralization from organic matters, elucidation of the changes in soil enzyme activity can provide insight into the nutrient dynamics and ecosystem functioning. The current study aimed to assess the effect of thinning intensities on soil conditions. Un-thinned control, 20 % thinning, and 30 % thinning treatments were applied to a Larix kaempferi forest, and total carbon and nitrogen, total carbon to total nitrogen ratio, extractable nutrients (inorganic nitrogen, phosphorus, calcium, magnesium, potassium), and enzyme activities (acid phosphatase, ${\beta}$-glucosidase, ${\beta}$-xylosidase, ${\beta}$-glucosaminidase) were investigated. Results: Total carbon and nitrogen concentrations were significantly increased in the 30 % thinning treatment, whereas both the 20 and 30 % thinning treatments did not change total carbon to total nitrogen ratio. Inorganic nitrogen and extractable calcium and magnesium concentrations were significantly increased in the 20 % thinning treatment; however, no significant changes were found for extractable phosphorus and potassium concentrations either in the 20 or the 30 % thinning treatment. However, the applied thinning intensities had no significant influences on acid phosphatase, ${\beta}$-glucosidase, ${\beta}$-xylosidase, and ${\beta}$-glucosaminidase activities. Conclusions: These results indicated that thinning can elevate soil organic matter quantity and nutrient availability, and different thinning intensities may affect extractable soil nutrients inconsistently. The results also demonstrated that such inconsistent patterns in extractable nutrient concentrations after thinning might not be fully explained by the shifts in the enzyme-mediated nutrient mineralization.

Fate of inorganic nitrogen by addition of silica materials on the fresh soil condition (규산자재(珪酸資材)의 첨가(添加)에 따른 답토양중(沓土壤中) 무기태질소(無機態窒素)의 동태(動態))

  • Lee, Sang Kyu;Yu, Jin Chang;Kohno, Michiyoshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.61-68
    • /
    • 1975
  • A laboratory study was conducted to determine the effect of nitrogen mineralization in accordance with addition of calcium silicate and wollastonite on the fresh soil condition. Results are summarized as follows. 1. Nitrogen mineralization due to application of silica materials was rapidly occured in Saweon sand soil than in Honam clay soil. Also wollastonite application more stimulated the nitrogen mineralization than calcium silicate. 2. Silica material application enhanced loss of applied nitrogen by denitrification due to accelerate the nitrification in Suweon sand soil. This tendency was more severe in calcium silicate applicated treatment than in wallasnonite applicated. 3. From these results, nitrogen should be applicated with organic matter to improve the supply of nitrogen nutrient to plant when silica materials were applied.

  • PDF

Recommendation of Optimum Amount of Fertilizer Nitrogen Based on Soil Organic Matter for Chinese Cabbage and Cabbage in Volcanic Ash Soils of Cheju Island (제주도 화산회토양의 배추와 양배추에 대한 질소의 시비추천식 설정)

  • Song, Yo-Sung;Kwak, Han-Kang;Yeon, Byeong-Yeal;Lee, Choon-Soo;Yoon, Jung-Hui;Moon, Doo-Young;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • To find out the optimum nitrogen fertilization levels for the leafy vegetables in volcanic ash soils of Cheju island, fertilization effects on chinese cabbage chinese and cabbage were investigated through pot and field experiments. In pot experiment conducted with two volcanic ash soils of Cheju island, optimum rates of nitrogen fertilizer was ranged from 294 to $331kg\;ha^{-1}$ for chinese cabbage. At field experiment with one volcanic soil, the optimum N fertilizer was $331kg\;ha^{-1}$. On the basis of soil organic matters, fertilizer recommendation formula for cabbage, could be established by using 1.03 of comparison factors (F) compared with chinese cabbage : y=344.54-0.285x for chines cabbage, y= 354.88-0.294x for cabbage, where y is the recommendation amount of nitrogen fertilizer with x g $kg^{-1}$ of organic matter in soil. Actual optimum rate of nitrogen fertilizer for chinese cabbage under field condition was much more similar to the value caluculated by the revised nitrogen recommendation formula than the amount of nitrogen fertilizer recommended by the current formula in volcanic ash soil.

Effect of Soil Textures on Fruit Yield, Nitrogen and Water Use Efficiencies of Cucumber Plant as Affected by Subsurface Drip Fertigation in the Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Park, Young-Eun;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.372-378
    • /
    • 2015
  • Growing crops under different soil textures may affect crop growth and yield because of soil N availability, soil N leaching, and plant N uptake. The objective of this study was to evaluate effects of three different soils (sandy loam, loam, and clay loam) on cucumber (Cucumis sativus L.) yield, nitrogen (N) use efficiency (NUE), and water use efficiency (WUE) by subsurface drip fertigation in the greenhouse. Three different soil textures are sandy loam, loam, and clay loam with 3 replications. The dimension of each lysimeter was $1.0m(W){\times}1.5m(L){\times}1.0m(H)$. Cucumber was transplanted on April $8^{th}$ and Aug $16^{th}$ in 2011. The subsurface drip line and tensiometer was installed at 30 and 20 cm soil depth, respectively. An irrigation with $100mg\;NL^{-1}$ concentration was automatically applied when the tensiometer reading was 10 kPa. Volumetric soil water content for cucumber cultivation was the highest in 30 cm soil depth regardless of soil texture and was lowered when soil depth was deeper. The volumetric soil water contents at soil depths of 10, 30, 50, and 70 cm were the highest at clay loam, followed by loam, and sandy loam. The growth of cucumber at the $50^{th}$ day after transplanting was the lowest at sandy loam. Cucumber fruit yields were similar for all three soil textures. The highest amount of water use at sandy loam was observed. Nitrogen and water use efficiencies for cucumber were higher for clay loam, followed by loam and sandy loam, while the amount of N leaching was the greatest under sandy loam, followed by loam, and clay loam. Overall, growing cucumber on either loam or clay loam is better than sandy loam if subsurface drip fertigation is used in the greenhouse.

토양 및 재배식물에 미치는 연탄회의 영향

  • 차종환
    • Journal of Plant Biology
    • /
    • v.7 no.1
    • /
    • pp.5-10
    • /
    • 1964
  • The effects of briquette ashes on the growth of vegetable (cabbage, lettuce, spinach and radish) and their fresh weight under the culture of the soil mixed with the briquette ashes, and on the chemical properties of the soil were investigated. The growth rate of these palnts and chemical properteis of the soil has shown some influence due to different concentration of briquette ashes added to the soil. The increase of growth in cabbage and lettuce was remarkably found by the plot treated with 1/50 concentration of briquette ashes. The fresh weight of vegetable plants was increased with high concentration of briquette ashes, but if the concentration of briquette ashes was too high, it was rather depressed. Chemical properties in the soil after cultivation of the plants were more depressed than before cultivation. In contrast the available nitrogen content in the soil after cultivation was more increased than before cultivation of the plants. The reduction of available nitrogen and nitrate nitrogen was associated with the increasing intensity of briquette ashes, but available phosphorus content was increased with high concentration of briquette ashes, though its content was not so high as the results obtained by Han(8). The values of total exchangeable base and pH in the soils treated with briquette ashes were increased with a high degree of the concentration of ashes. The value of pH was not significant, and pH value of lime plots was higher than that of briquette ashes. The average value of the water content did not show any difference, and the difference of the content of organic matter in the soil in which different vegetable grew into the plots reached to the significance of a 5% level.

  • PDF

Effects of Animal Excreta Classification and Nitrogen Fertilizing Level on Productivity of Pasture Plants and Improvement of Soil Fertility in Mixed Grassland (혼파초지에서 가축분뇨의 종류와 시용수준이 목초의 생산성 및 지력증진에 미치는 영향)

  • 육완방;최기춘
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.4
    • /
    • pp.203-210
    • /
    • 2001
  • To establish the recycling system of animal manure(AM) for environmental preservation and improve the utilization of AM, this study was to investigate the effects of the types and nitrogen application rate of AM on herbage productivity, efficiency of nitrogen utilization, nutritive value and an increase of soil fertility and in mixed grassland. This sudy was arranged in split plot design. Main plots were the types of AM(Cattle feedlot manure, CFM; Pig manure fermented with sawdust, PMFS; cattle sluny, CS) and subplots were the application rate of animal manure, such as 100, 200 and 300kgNiha. I. DM yields of herbage were the highest with CS and decreased by application over ZOOkgNiha AM. 2. Crude protein(CP) ontent was the highest with CFM and followed by CS, and the lowest with PMFS, and increased as application rate of AM increased. 3. Nitrogen(N) yields of CS treatment was higher than that of CFM and CS. and increased significantly as application rate of AM increased(P<0.05). 4. The contents of NDF, ADF and TDN was hardly influenced by the types and application rate of AM. 5. Organic matter(0M) content in the soil was the highest with PMFS and followed by CFM and the lowest with CS. OM content increased significantly as application rate of AM increased(P<0.05). 6. Total nitrogen content of the soil was not affected by the type of AM, but increased significantly as application rate of AM increased(P<0.05). (Key words : Animal manure, Grassland, Cattle feedlot manure, Pig manure fermented with sawdust, Cattle slurry, Soil fertility)

  • PDF

Potential Nitrogen Mineralization and Availability in Upland Soil Amended with Various Organic Materials

  • Im, Jong-Uk;Kim, Song-Yeob;Jeon, Seong-Hwa;Kim, Jang-Hwan;Yoon, Young-Eun;Kim, Sook-Jin;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.40-48
    • /
    • 2017
  • In this study, we evaluated the nitrogen (N) mineralization potential and Nitrogen use efficiency (NUE) of oil-cake, compost, hairy vetch and barley, which are the most widely used organic amendments in South Korea. The N mineralization potential (No) for organic fertilizers treated soil was highest for the hairy vetch treatment with a value of $18.9mg\;N\;100\;g^{-1}$, followed by oil-cake, barley and compost. The amount of pure N mineralization potentials in hairy vetch, oil-cake, barley and compost treatments were 8.42, 7.62, 3.82 and $3.60mg\;N\;100\;g^{-1}$, respectively. The half-life ($t_{1/2}$) of organic N in soil amended with oil-cake fertilizer mineralized quickly in 17 days. While, $t_{1/2}$ values of organic N for the compost and barley treatments accounted to 44.4 and 44.1 days, respectively. Oil-cake was good in supplying nutrients to plants. Compost and barley inhibited plant growth in the beginning growth stage and this is attributed to N immobilization effect. The results of this study highlight that compost and barley could be used as potential slow release fertilizers in conventional agriculture.