• 제목/요약/키워드: Soil nitrate nitrogen

검색결과 317건 처리시간 0.026초

Effect of Nitrogen Application Levels on Nitrate Concentration in Soil Solution under Plastic Film House

  • Lee, Chang Hoon;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak
    • 한국토양비료학회지
    • /
    • 제48권1호
    • /
    • pp.30-35
    • /
    • 2015
  • This study was conducted to investigate investigated the effect of nitrogen fertilizer on nitrate concentration in soil solution and to determine the relationship between yield and nitrate concentration in soil solution for cucumber cultivation under plastic film house. Nitrogen as urea was applied at rates of 0, 120, 240, 360, and $480kg\;N\;ha^{-1}$ as an additional fertilizer by trickle irrigation during cucumber cultivation. Monitoring of nitrate concentration in soil solution was investigated using porous cups at 25 cm depth under soil surface. Nitrate concentration in soil solution increased with increasing the rate of additional nitrogen. Correlation coefficient between EC value and nitrate concentration was positive in soil and soil solution (p<0.05). An additional nitrogen of about $300kg\;ha^{-1}$ was shown the highest yield of cucumber, and improved yield by 5% compared to N recommendation of $240kg\;N\;ha^{-1}$. The highest yield was determined at nitrate concentration of $82mg\;L^{-1}$ in soil solution by regression equation ($Y=74.2+0.73X+0.000504X^2$, $R^2=0.629^*$). These results means indicate that nitrate concentration in soil solution would be useful method to rapid determination for additional nitrogen during cucumber cultivation under plastic film house.

토양(土壤)중 질산태질소(窒酸態窒素)의 행동(行動)과 지하수질(地下水質) (Behaviour of $NO_3-N$ in Soil and Groundwater Quality)

  • 윤순강;유순호
    • 한국환경농학회지
    • /
    • 제12권3호
    • /
    • pp.281-297
    • /
    • 1993
  • Nitrogen is an element required to meet optimal plant growth. However, when it was applied (as chemical fertilizer or animal waste) more than the demand of plant and managed it unreasonably can be accumulated in subsoil and leached from soil system. Nitrogen also can be act as an pollutant to soil and water through water contamination if its concentration exceed the critical level. The concentration and downward movement of nitrate in soil is influenced by cultural practices and soil properties. High level of nitrate nitrogen in drinking water is harzadrous for animal and human health, especially for infants and the restoration of the quality of groundwater is impossible by now. Therefore it is the only way to prevent from leaching of nitrate nitrogen to keep the quality of groundwater as vital water resource. The aims of the presentation of this review paper are to understand the relationship between agricultural practices and the concentration of nitrate nitrogen in groundwater and to suggest further informations for the rational management methods to reduce the leaching of nitrate nitrogen in soil.

  • PDF

시설조건(施設條件)의 배추 재배(栽培) 토양(土壤)에서 질산태질소(窒酸態窒素) 검정(檢定)에 의한 질소실비량(窒素施肥量) 결정(決定) (Optimum Level of Nitrogen Fertilizer Based on Content of Nitrate Nitrogen for Growing Chinese Cabbage in Green House)

  • 박효택;홍순달
    • 한국토양비료학회지
    • /
    • 제33권6호
    • /
    • pp.384-392
    • /
    • 2000
  • 토양중 질산태 질소 함량이 $14{\sim}225mg\;kg^{-1}$의 범위를 갖는 시설재배지 9개 토양에서 배추를 공시작물로 하여 무비구, 3요소 표준시비량의 50%구, 100%구 및 150%구의 4개 시비수준에서 포트재배로 수량반응, 비료효과 및 시비효율 등을 검토하였다. 무비구 배추 건물중과 토양의 질산태 질소 함량은 유의성 있는 정의 상관을 나타냈고 시비구와 무비구의 건물중, 질소흡수량 및 질산태 질소흡수량의 차이로 평가한 비료효과 및 시비효율과는 유의성 있는 부의 상관을 보였다. 질산태 질소함량에 따른 시비수준별 건물중 반응의 관계로부터 표준시비량이 적용되는 질산태 질소의 하한기준은 $50mg\;kg^{-1}$ 미만으로 추정되었고, 질산태질소 함량과 비료효과 및 시비효율과의 회귀관계로부터 평가된 무비 재배를 위한 질산태 질소 함량은 $200mg\;kg^{-1}$ 이상으로 추정되었다. 따라서 시설재배지 토양중 질산태 질소 함량 $50mg\;kg^{-1}$에서 $200mg\;kg^{-1}$ 범위는 질소 표준시비량에 대한 비율로서 추천식은 $Y=-0.6667{\chi}+133.33$ 이었다 (Y:질소 표준시비량에 대한 %, ${\chi}$: 시험전 토양의 $NO_3-Nmg\;kg^{-1}$).

  • PDF

Mineral N, Macro Elements Uptake and Physiological Parameters in Tomato Plants Affected by Different Nitrate Levels

  • Sung, Jwa-Kyung;Lee, Su-Youn;Kang, Seong-Soo;Lee, Ye-Jin;Kim, Ro-Gyoung;Lee, Ju-Young;Jang, Byoung-Choon;Ha, Sang-Keun;Lee, Jong-Sik
    • 한국토양비료학회지
    • /
    • 제44권4호
    • /
    • pp.551-558
    • /
    • 2011
  • The aim of this study was to know whether leaf nitrate can be a substitute of total leaf N to justify plant N status and how nitrate influences macro elements uptake and physiological parameters of tomato plants under different nitrogen levels. Leaf nitrate content decreased in low N, while showed similar value with the control in high N, ranging from 55 to $70mg\;g^{-1}$. Differences in nitrate supply led to nitrate-dependent increases in macro elements, particularly cations, while gradual decrease in P. Physiological parameters, photosynthesis rates and antioxidants, greatly responded in N deficient conditions rather than high N, which didn't show any significant differences compared the control. Considering nitrogen forms and physiological parameters, total-N in tomato plants represented positive relation with growth (shoot dry weight), nitrate and $CO_2$ assimilation, whereas negative relation with lipid peroxidation.

동계 사초호밀 및 녹비 헤어리베치 재배에 따른 토양 질산태질소 및 옥수수 질소 흡수량 비교 (Comparisons of Soil Nitrate and Corn Nitrogen Uptake According to Winter Forage Rye and Green Manure Hairy Vetch)

  • 서정호;이호진;허일봉;김시주;김충국;조현숙
    • 한국초지조사료학회지
    • /
    • 제20권3호
    • /
    • pp.199-206
    • /
    • 2000
  • 사료용 옥수수에 대한 동계호밀 재배 및 헤어 리베치 녹비의 영향을 규명하기 위하여 동계호밀, 헤어리베치 녹비, 동계휴한의 세 작부체계에 질소 수준을 100, 200kgN/ha를 각각 두어 토양의 질산 태 질소와 옥수수의 수량 및 질소 흡수량의 차이 를 살펴 본 결과는 다음과 같다. 옥수수 파종직전 호멸을 재배한 구는 토양의 질산태 질소량은 동 계 휴한구보다 다소 감소하였으나 헤어리베치 재 배구는 동계 휴한구와 큰 차이가 없었다. 베치녹 비구는 옥수수 질소추비기 및 수확기에 토양 질 산태 질소가 증가하여 동계 휴한구나 호밀잔사구 보다 평균 60~70 kgN/ha의 질산태 질소가 많았으며 베치를 녹비로 환원하고 질소비료를 200 k kgN/ha 시용하였을 때 100 kgN/ha 내외의 질산태 질소가 옥수수에 흡수되지 못하고 수확기 에 토양 에 잔류하였다. 옥수수 수량 및 종실의 질소 함량은 세 작부체계 모두 질소비료 100 kgN/ha 이상 에서는 증가하지 않았지만 간엽의 질소 함량과 질소 흡수량이 베치녹비시 현저히 증가하여 동계 휴한 및 동계 호밀구보다 50 - 60 kgN/ha의 질소 를 옥수수가 더 흡수하였다. 따라서 옥수수 수확 시 토양에 잔류하는 질산태 질소량 및 옥수수의 질소흡수량의 증가를 고려할 때 동계에 헤어리베 치를 재배하여 녹비의 환원시 독비에 의한 무기 태 질소 공급효과가 100 kgN/ha 이상일 것으로 추측되며 질소기비의 100 kgN/ha는 필요 없는 것으로 판단되었다.

  • PDF

Hydrochemical Characteristics and Nitrate-Nitrogen Contamination in Shallow Groundwater in Two Agricultural areas in Korea

  • Sul-Min Yun;Hang-Tak Jeon;Ji-Min Hwang;MoonSu Kim;HyunKoo Kim;Se-Yeong Hamm
    • 한국지구과학회지
    • /
    • 제44권4호
    • /
    • pp.291-306
    • /
    • 2023
  • Shallow groundwater in rural areas is primarily polluted by agricultural activities. Nitrate-nitrogen is an indicator of artificial pollution. In this study, the hydrochemical characteristics and nitrate-nitrogen pollution of shallow groundwater were examined in two agricultural villages (Hyogyo-ri and Sinan-ri) in Chungcheongnam-do Province, Korea. Physicochemical quality analysis of shallow groundwater and stream water in the field, and chemical analysis in the laboratory were conducted from July 2020 to October 2021. In Hygyo-ri and Sinan-ri villages, shallow groundwater mainly belonged to the Ca-Cl, Ca-H CO3, Na-HCO3, and Na-Cl types, whereas stream water predominantly belonged to the Ca-HCO3 type. The nitrate-nitrogen concentration in shallow groundwater varied depending on the season, displaying an increased concentration of nitrate-nitrogen in the dry season compared to the rainy season. Stream water may be influenced by runoff into villages from the surrounding area, although both shallow groundwater and stream water are affected by artificial pollution. In addition, the nitrate-nitrogen concentration in stream water was lower than that in shallow groundwater.

Geochemical Characteristics and Assesment of Nitrate Nitrogen in Groundwater in Yanggu-Gun, Gangwon-Do in Korea

  • Choi, Won Gyu
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권6호
    • /
    • pp.26-32
    • /
    • 2019
  • An analysis of groundwater quality is significant for monitoring and managing water contamination and groundwater system. For the purpose of those, the geochemical characteristics of groundwater were studied over the concern for water quality, water type and origin of nitrate nitrogen. Total colony counts were detected in 11 out of 20 samples, and the average value was 31.73 CFU/ml. Range and average of NO3-N concentrations were 0.9~24.0 mg/L and 8.3 mg/L. All groundwater types were found to be Ca2+-HCO3-. The range and average of NO3-N were 0.2~17.4 mg/L and 8.7 mg/L, and those of δ15N were 1.7~8.9‰, and 5.0‰. Careful consideration is required for evaluating the origin of nitrogen when NO3-N concentration is low. In general, noticeable difference between rockbed and alluvial water was not found. The ranges of nitrate origins by chemical fertilizer, livestock manure and domestic sewage, and natural soil were 29.6~76.4%, 14.2~58.9% and 2.6~7.0%, and the average values of those were 57.4%, 37.4%, and 5.3%, respectively. Origin of nitrate was affected by more chemical fertilizer than the other parameters. Rockbed water was more affected by chemical fertilizer than alluvial water.

시설재배 토양의 질산태질소 검정에 의한 배추의 질소시비량 결정 (Nitrogen Recommendation Based on Soil Nitrate Test for Chinese Cabbage Grown in Plastic Film House)

  • 곽한강;송요성;홍종운
    • 한국토양비료학회지
    • /
    • 제30권1호
    • /
    • pp.84-88
    • /
    • 1997
  • 시설재배조건하에서 토양의 질산태질소함량과 시용질소에 대한 배추의 수량반응 및 시비효율 등을 검토한 결과를 요약하면 다음과 같다. 토양의 $NO_3{^-}-N$함량은 배추의 수량 및 질소흡수량과는 유의한 정상관, 시비효율과는 유의한 부의 상관이 있어서, 시험전 토양의 $NO_3{^-}-N$ 310mg/kg정도 있으면 질소무비재배가 가능하였다. 질소시비량 추정회귀식에서 시험전토양의 질산태질소함량에 따른 배추의 질소시비량 추천식은 y=-1.424x+441.356(x:시험전토양의 $NO_3{^-}-N$, mg/kg, y:질소시비량 kg/ha)이었다.

  • PDF

Analysis of Soil Total Nitrogen and Inorganic Nitrogen Content for Evaluating Nitrogen Dynamics

  • Lee, Seul-Bi;Sung, Jwa-Kyung;Lee, Ye-Jin;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae;Hong, Suk-Young
    • 한국토양비료학회지
    • /
    • 제50권2호
    • /
    • pp.100-105
    • /
    • 2017
  • Various methods for assessing soil total nitrogen (TN) and inorganic N content have been developed to manage nutrient and to understand N cycle in soil. This paper address the technical procedures in arable soil samples to conduct soil sampling, sample preparation, and measuring total N and inorganic N. Among various methods for measuring soil total nitrogen contents, Kjeldahl distillation and Indophenol blue method have widely used due to reliability and economic advances. Also, two methods can analyze more samples at the same time compared with other nitrogen measuring methods. For evaluating inorganic N content, mainly in forms of nitrate-N ($NO_3{^-}-N$) and ammonium-N ($NH_4{^+}-N$), extraction with a single reagent such as 2M KCl has been employed, followed by Kjeldahl distillation or indophenol blue methods.

Cucumber Growth and Nitrogen Uptake as Affected by Solution Temperature and NO3-:NH4+ Ratios during the Seedling

  • Yan, Qiu-Yan;Duan, Zeng-Qiang;Li, Jun-Hui;Li, Xun;Dong, Jin-Long
    • 원예과학기술지
    • /
    • 제31권4호
    • /
    • pp.393-399
    • /
    • 2013
  • The effect of solution temperature and nitrogen form on cucumber (Cucumis sativus L.) growth, photosynthesis and nitrogen metabolism was investigated in hydroponic culture. Cucumber plants were grown for 35 days in a greenhouse at three constant solution temperatures ($15^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$) within a natural aerial temperature ($15-30^{\circ}C$). Four nitrate:ammonium ($NO{_3}^-:NH{_4}^+$) ratios (10:0, 8:2, 5:5, and 2:8 $mmol{\cdot}L^{-1}$) at constant nitrogen (N) concentration of $10mmol{\cdot}L^{-1}$ were applied within each solution temperature treatment. Results showed an increasing solution temperature enhanced plant growth (height, dry weight, and leaf area) in most N treatments. Dry weight accumulation was greatest at the 10:0 $NO{_3}^-:NH{_4}^+$ ratio in the $15^{\circ}C$ solution, the 5:5 ratio in the $20^{\circ}C$ solution and the 8:2 ratio in the $25^{\circ}C$ solution. Photosynthetic rate (Pn) response to solution temperature and $NO{_3}^-:NH{_4}^+$ ratio was similar to that of plant growth. Probably, the photosynthate shortage played a role in the reduced biomass formation. Increasing solution temperature enhanced the nitrate reductase (NR) activity, and further reduced shoots nitrate content. Our results indicate that the optimal ratio of nitrate to ammonium that promotes growth in hydroponic cucumber varies with solution temperature.