• Title/Summary/Keyword: Soil nailed wall

Search Result 27, Processing Time 0.02 seconds

An optical fibre monitoring system for evaluating the performance of a soil nailed slope

  • Zhu, Hong-Hu;Ho, Albert N.L.;Yin, Jian-Hua;Sun, H.W.;Pei, Hua-Fu;Hong, Cheng-Yu
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.393-410
    • /
    • 2012
  • Conventional geotechnical instrumentation techniques available for monitoring of slopes, especially soil-nailed slopes have limitations such as electromagnetic interference, low accuracy, poor longterm reliability and difficulty in mounting a series of strain sensors on a soil nail bar with a small-diameter. This paper presents a slope monitoring system based on fibre Bragg grating (FBG) sensing technology. This monitoring system is designed to perform long-term monitoring of slope movements, strains along soil nails, and other slope reinforcement elements. All these FBG sensors are fabricated and calibrated in laboratory and a trial of this monitoring system has been successfully conducted on a roadside slope in Hong Kong. As part of the slope stability improvement works, soil nails and a toe support soldier-pile wall were constructed. During the slope works, more than 100 FBG sensors were installed on a soil nail, a soldier pile, and an in- place inclinometer. The paper presents the layout and arrangement of the instruments as well as the installation procedures adopted. Monitoring data have been collected since March 2008. This trial has demonstrated the great potential of the optical fibre monitoring system for long-term monitoring of slope performance. The advantages of the slope monitoring system and experience gained in the field implementation are also discussed in the paper.

An Experimental Study on the Application of End-Expanded Soil Nailing Method (선단확장식 소일네일링 공법의 적용성에 관한 실험적 연구)

  • Lee, Sang-Eun;Jang, Yun-Ho;Moon, Chang-Yeul;Jeong, Gyo-Cheol;Park, Young-Sun
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 2007
  • The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.

A Study on the Stabilizing Method against Landslide using Slide Suppressor Wall (산사태 억지벽체공법에 관한 연구)

  • Kim, Hong-Taek;Gang, In-Gyu;Yeom, Gyeong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.06c
    • /
    • pp.94-110
    • /
    • 1994
  • This paper Voposes a stabilizing method against landslide using slide suppressor wall reinforced with soil nails. Included are a Evuedlwe to predict earth Uessures acing on nailed-slide suppressor wall and a method of analysis of the laterally loaded concrete pile. Based rut the Voposed Vocedure, the emcignt installation type and inclusion angle of nails are analyzed. Also, optimum location of the slide suppressor wall composed of concrete panel and stabilizing pile is examined using the UC Vogram. Finally, an example is given to illustrate the analysis and desisa procedure of the proposed slope reinforcing method.

  • PDF

Behavior Analysis of Assembling Soil Nailed Walls through Large Scaled Load Test (대형파괴재하시험을 통한 조립식 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Ki, Minju;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • Soil nailing system can be mentioned to a method of supporting as the shear strength of in-situ soils is increased by passive inclusions. In the general soil nailing system, facing walls are used in two kind of a lattice concrete block or a cast in placed concrete wall. A case of lattice concrete blocks is used in slow slopes greater than 1(V):0.7(H). Also, a case of a cast in placed concrete wall is used in steep slopes less than 1(V):0.5(H). The cast in placed concrete walls are constructed to 30 cm thick together with a shotcrete facing. In this study, the assembling soil nailing method as a new soil nailing system will be proposed. This method is assembly construction using precast concrete panels with 20 cm thick. So, the ability of construction and the quality of facings can be improved more than a conventional soil nailing system. This method can be obtained the effects that a global slope stability increase, as precast concrete panels are immediately put on cutting face after excavating a slope. In this study, confining effects of concrete panels using the assembling soil nailing system were found out by large scaled load tests. In the tests, the load-settlement relationship to an assembling soil nailing system due to the stiff facings as concrete panels appeared to be better than a typical soil nailing system with shotcrete facings.

  • PDF

Comparison of Domestic and Foreign Design Standards for Overall Stability of Soil Nailed Slopes (쏘일네일 보강 비탈면의 전체 안정성에 대한 국내외 설계기준 비교)

  • Kim, Tae-Won;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.6
    • /
    • pp.5-13
    • /
    • 2019
  • The international trend in soil nailed wall design has been evolved from the allowable stress design to limit state design and it is still currently ongoing. The design guidelines in Korea and Hong Kong still adopts the allowable stress design philosophy while those in others mostly do the limit state design. In this study, four soil nail design methods presented in the major design guidelines (U.S. FHWA GEC 7 (2015), Clouterre in France (1991), Soil nailing - best practice guidance in U.K. (CIRIA, 2005), Geoguide 7 in Hong Kong (2008) and Design standard for slope reinforcement work in Korea (KDS 11 70 15 f: 2016)) are described and analyzed in brief. The factor of safety and CDR (Capacity-to-Demand Ratio) which is used to measure the degree of conservatism of a design guide are obtained for the two cases. One is the design example presented in CIRIA (2005) and the other is in-situ loading test performed on the top of backfill of the soil nail wall to investigate the conservatism of design guidelines. It is revealed that the design method in overall stability of soil nail walls in domestic design method (CDR=0.78) is the most conservative and those by Clouterre (CDR=0.99, 1.09), Geoguide 7 (CDR=1.13, 0.97), U.S. FHWA (CDR=1.09, 1.07) and CIRIA (CDR=1.40, 1.16) in order from the second most conservative to the least conservative for the design example presented in CIRIA. For the in-situ loading test performed on the top of backfill of the soil nail wall, the order of conservatism is identical except that the places of Geoguide 7 (CDR=0.66, 0.72) and FHWA (CDR=0.73, 0.72) are changed. However, the results obtained among U.S. FHWA (2015) and Clouterre (1991) and Geoguide 7 (2008) are not so different.

A Study on the Application of Bamboo Soil Nailing System through Experimental Construction (현장 시험시공을 통한 대나무 쏘일네일링공법의 적용성에 관한 연구)

  • Bang, Yoonkyung;Yang, Younghoon;Suh, Jeeweon;Yoo, Namjae;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.23-34
    • /
    • 2015
  • In this study, a newly modified soil nailing technology using bamboo is developed. And field tests were performed to confirm applicability of bamboo soil nailing system. For the practical use of bamboo soil nailing system, laboratory tests, field instrumentations and pullout tests were also performed to investigate the applicability. The results of field measurement through field tests were compared with the results of numerical analyses for verifying the field construction. As a result, the results of comparing with the field measurement and numerical analyses shows the similar behavior characteristics. Based on this study, applicability for bamboo soil nailing systems were confirmed for the case of comparatively low scale nailed-soil excavation wall. And it is expected that the bamboo soil nailing system can be used as satisfactory reinforcement technique taking the place of existing steel reinforcement soil nailing system. Hereafter, it needed the research for the applicability for the various types of excavation condition, also the active practical application of bamboo soil nailing system is needed.

Optimum Design of Soil Nailing Excavation Wall System Using Genetic Algorithm and Neural Network Theory (유전자 알고리즘 및 인공신경망 이론을 이용한 쏘일네일링 굴착벽체 시스템의 최적설계)

  • 김홍택;황정순;박성원;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.113-132
    • /
    • 1999
  • Recently in Korea, application of the soil nailing is gradually extended to the sites of excavations and slopes having various ground conditions and field characteristics. Design of the soil nailing is generally carried out in two steps, The First step is to examine the minimum safety factor against a sliding of the reinforced nailed-soil mass based on the limit equilibrium approach, and the second step is to check the maximum displacement expected to occur at facing using the numerical analysis technique. However, design parameters related to the soil nailing system are so various that a reliable design method considering interrelationships between these design parameters is continuously necessary. Additionally, taking into account the anisotropic characteristics of in-situ grounds, disturbances in collecting the soil samples and errors in measurements, a systematic analysis of the field measurement data as well as a rational technique of the optimum design is required to improve with respect to economical efficiency. As a part of these purposes, in the present study, a procedure for the optimum design of a soil nailing excavation wall system is proposed. Focusing on a minimization of the expenses in construction, the optimum design procedure is formulated based on the genetic algorithm. Neural network theory is further adopted in predicting the maximum horizontal displacement at a shotcrete facing. Using the proposed procedure, various effects of relevant design parameters are also analyzed. Finally, an optimized design section is compared with the existing design section at the excavation site being constructed, in order to verify a validity of the proposed procedure.

  • PDF