• Title/Summary/Keyword: Soil moisture index

Search Result 284, Processing Time 0.032 seconds

Construction of NCAM-LAMP Precipitation and Soil Moisture Database to Support Landslide Prediction (산사태 예측을 위한 NCAM-LAMP 강수 및 토양수분 DB 구축)

  • So, Yun-Yeong;Lee, Su-Jung;Choi, Sung-Won;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.152-163
    • /
    • 2020
  • The present study introduces a procedure to prepare and manage a high-resolution rainfall and soil moisture (SM) database in the LAMP prediction system, especially for landslide researchers. The procedure also includes converting the data into spatial resolution suitable for their interest regions following proper map projection methods. The LAMP model precipitation and SM data are quantitatively and qualitatively evaluated to identify the model prediction characteristics using the ERA5 reanalysis precipitation and observed 10m depth SM data. A detailed process of converting LAMP Weather Research and Forecasting (WRF) output data for 10m horizontal resolution is described in a step-wise manner, providing technical convenience for users to easily convert NetCDF data from the WRF model into TIF data in ArcGIS. The converted data can be viewed and downloaded via the LAMP website (http://df.ncam.kr/lamp/index.do) of the National Center for AgroMeteorology. The constructed database will contribute to monitoring and prediction of landslide risk prior to landslide response steps and should be data quality controlled by more observation data.

Studies on the Genesis of Ginseng Rust Spots

  • Wang, Yingping;Li, Zhihong;Sun, Yanjun;Guo, Shiwei;Tian, Shuzhen;Liu, Zhaorong
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.69-77
    • /
    • 1997
  • In order to explain the connection between ginseng rust spot and soil ecological conditions, the bed soils and ginseng roots were sampled at different microrelief units and the reducing substances of the bed soils and iron forms of the ginseng root epi dermises were determined. The results showed that the occurrence of the rust spot was connected with the ecological conditions of the soils and the metabolism of the plant which was caused by the excessive $Fe^{2+}$ in the soil solution. Ginseng rust spot was the enrichment of iron which was mainly composed of organic complex irons. Including active ferrous active ferric and non active ferric forms and they were transformed into each other following the change of soil moisture and temperature regimes. According to the regularity of growth and decline of reducing substances in soil and rust index of ginseng roots as well as the difference of adaptability to excessive $Fe^{2+}$ in soil among different year-old seeding, a new comprehensive measure based on the connection of ameliorating soil and improving cultivation system was recommended to prevent the occurrence of ginseng rust spot.

  • PDF

Estimation and Analysis of Parameters for Rainfall-Runoff Model on the Nakdong River (낙동강 수계 유출분석을 위한 강우-유출 모형의 매개변수 산정)

  • Maeng, Seung-Jin;Lee, Soon-Hyuk;Ryoo, Kyong-Sik;Song, Gi-Heon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.266-271
    • /
    • 2005
  • In this study, following works have been carried out : division of Nakdong River Basin into 25 sub basins, development of a technique to evaluate spatial distribution of rainfall and analysis of rainfall data of 169 stations, selection of control points, and selection of a hydrologic model(SSARR). The runoff analysis showed that the surface-subsurface separation and soil moisture index parameters are the most important two to the simulation result.

  • PDF

Study on Multiscale Analysis on Drought Characteristics

  • Uranchimeg, Sumiya;Kwon, Hyun Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.611-611
    • /
    • 2015
  • One of the hazard of nature is a drought. Its impact varies from region to region and it is difficult for people to understand and define due to differences in hydrometeorological and social economic aspects across much of the country. In the most general sense, drought originates from a deficiency of precipitation over an extended period of time, usually month, season or more, resulting in a water shortage for some activity, group, or environmental sector. Palmer Drought Severity Index (PDSI) is well known and has been used to study aridity changes in modern and past climates. The PDSI index is estimated over US using USHCN historical data.(e.g. precipitation, temperature, latitude and soil moisture). In this study, low frequency drought variability associated with climate variability such as El-Nino and ENSO is mainly investigated. With respect to the multi-scale analysis, wavelet transform analysis is applied to the PDSI index in order to extract the low frequency band corresponding to 2-8 years. Finally, low frequency patterns associated with drought by comparing global wavelet power, with significance test are explored.

  • PDF

Relationship between Macrofungi Fruiting and Environmental Factors in Songnisan National Park (속리산 국립공원의 버섯발생과 환경요인과의 관계)

  • Park, Yong-Woo;Koo, Chang-Duck;Lee, Hwa-Yong;Ryu, Sung-Ryul;Kim, Tae-Heon;Cho, Young-Gull
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.657-679
    • /
    • 2010
  • Mushroom fruiting was investigated in pine and oak dominated forest stands in Songni National Park located in central Korea for six years from 2003 to 2008, in order to understand the relationship between mushroom diversity and the environmental factors, precipitation, temperature, soil moisture and vegetation. The most frequent fruiting families were those of ectomycorrhizal mushrooms, Tricholomataceae, Amanitaceae, Russulaceae, Cortinariaceae, and Boletaceae. The frequency of mushroom fruiting varied from 94 to 167 species per year, with July and August having the highest(13~90 species). Mushroom fruiting was positively correlated to precipitation(r=0.897), using Palmer Drought Severity Index for the long term period and Standard Precipitation Index for short term period. Soil moisture content also affected mushroom fruiting, with Lactarius chrysorrheus and Russula virescens fruiting only at soil moisture content higher than 20%. Positive correlation between mushroom fruiting and temperature was also noted(r=0.77), with optimum rates at $21{\sim}25^{\circ}C$. Tricholoma flayayirens, Amanita gymnopus, Lactarius piperatus, Inocybe asteropora and Xerocomus chrysenteron were able to fruit at temperatures higher than $25^{\circ}C$. However, Laccaria amethystea, Amanita virosa and Russula mariae fruited at relatively wide temperature range. The influence of vegetation on mushroom fruiting was likewise noted, with 38 species, including Suillus bovinus and Boletopsis leucomelas being specific to pine dominated stands, while 42 species, including Polyporus arcularius and Hericium erinaceum were specific to oak dominated stands. On the other hand, around 50 species, including Laccaria laccata and Lycoperdon parlatum, were able to fruit in both types of vegetation. In conclusion, mushroom fruiting greatly varies with changes in precipitation, soil moisture, temperature and vegetation.

A Study on the Requirement of Tractor Pulling Force of Slurry Manure Spreader for the Utilization in Paddy Field (벼수확 논에서 트랙터견인형 액비살포기의 소요견인력 측정에 관한 연구)

  • Oh, I.H.;Kim, K.D.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 2002
  • This study was conducted to improve utilization efficiency of slurry and choose a suitable type of tractor power which can be attached by manure spreader in the paddy field. In the paddy field, the pulling force for the spreader was measured by using a measurement system installed between tractors with and without the spreader. The soil moisture contents at the 0${\sim}$10cm and 10${\sim}$20cm depth of test soil(SiCL) were 28.45% d.b. and 23.47% d.b., respectively in average while Cone Index at l0cm and 15cm depth were 14.5kPa and 16.2kPa, respectively. It was impossible to measure the soil moisture contents and Cone Index below 20cm depth of the soil because the hardness of the soil increased greatly. Thereafter, hard pan of the sampled soil was found at 15${\sim}$20cm depth. While the required power only for the dragged tractor was found to be 3.44kW in the test field, the required pulling powers of tractor considering the pumping were 8.48${\sim}$12.48kW, 12.19${\sim}$16.19kW, 16.96${\sim}$20.96kW, respectively for 2 tons, 3 tons, and 4 tons of tank capacity. As the tank capacity increased, the sinkage of soil were also increased to 7cm, l0cm, and 12cm, respectively for the tractors with 2 tons, 3 tons and 4 tons of tank capacity. Considering about 60% of pulling efficiency of tractor, a tractor which had lower than 25.74kW of pulling power was suitable to pull the spreader and spread the slurry simultaneously for manure spreader with 2 tons of tank capacity. 29.42kW${\sim}$36.78kW of pulling power was found to be optimum for the tractor with 3 tons of tank capacity while over 40.45kW for 4 tons of tank capacity.

  • PDF

Predicting soil-water characteristic curves of expansive soils relying on correlations

  • Ahmed M. Al-Mahbashi;Muawia Dafalla;Mosleh Al-Shamrani
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.625-633
    • /
    • 2023
  • The volume changes associated with moisture or suction variation in expansive soils are of geotechnical and geoenvironmental design concern. These changes can impact the performance of infrastructure projects and lightweight structures. Assessment of unsaturated function for these materials leads to better interpretation and understanding, as well as providing accurate and economic design. In this study, expansive soils from different regions of Saudi Arabia were studied for their basic properties including gradation, plasticity and shrinkage, swelling, and consolidation characteristics. The unsaturated soil functions of saturated water content, air-entry values, and residual states were determined by conducting the tests for the entire soil water characteristic curves (SWCC) using different techniques. An attempt has been made to provide a prediction model for unsaturated properties based on the basic properties of these soils. Once the profile of SWCC has been predicted the time and cost for many tests can be saved. These predictions can be utilized in practice for the application of unsaturated soil mechanics on geotechnical and geoenvironmental projects.

Spatial Distribution of Macropore Flow Percentage and Macroporosities in the Gwangneung Forest Catchment (광릉 산림 소유역에서의 대공극흐름율과 유효대공극부피분율의 공간 분포)

  • Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Lim, Jong-Hwan;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.234-246
    • /
    • 2007
  • The role of macropore in the hydrological processes is important at the hillslope scale. Developments and distribution of macropores have not been investigated in conjunction with the characteristics of the hillslope such as topography, soil property, and soil moisture. In this study, macropore properties, such as macropore flow and saturation hydraulic conductivity were measured at a hillslope located in Gwangneung Research Forest, Pochun-gun, Gyeonggi-do, South Korea. An intensive field survey provided a refined Digital Elevation Model (DEM) for surface and subsurface topography. Spatial distributions of upslope area and topographic index were obtained through the digital terrain analysis. The total number of monitoring points was 22, and the selected points were distributed along the transect of the digital contour map. Vertical fluxes through macropores were measured using a tension infiltrometer at the depth of 0.1 m from the surface. Spatial and temporal distributions of soil moisture were obtained using an on-line measurement system, TRASE, installed in the study area. Soil moisture for the aforementioned points was measured at 0.1 and 0.3m depths below the surface. The results from tension infiltrometer experiments present that the macropore flows ranged between 21 and 94%, and the measured macroporosities varied from 1.4 to 47%. Macropore flows and macroporosities tended to increase as the measurement location moved to downslope. The ability for water conduction through macropores becomes increasingly developed as the location approaches the outlet of the hillslope.

A study for spatial soil moisture downscaling method using MODIS satellite image (위성영상으로부터 산정된 토양수분자료의 상세화(Downscaling)기법 적용 및 고찰)

  • Joh, Hyung Kyung;Jang, Sun Sook;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.31-31
    • /
    • 2015
  • 토양수분은 일반적으로 시료를 채취하거나 현장에 설치된 다양한 센서를 통해 추정하지만 이는 시간과 비용이 많이 소모되기 ?문에 유역내의 공간적인 토양수분 분포를 추정하는데 상당한 어려움이 따른다. 토양수분뿐만 아니라 공간적인 대기현상, 토양수분, 식생현황 등을 관측하는데 대중적으로 사용되는 것이 위성 관측이며, 기본적으로는 위성에 탑재된 센서가 각 주파수대역에 따라 영상을 생성하면 이를 특정 알고리듬을 적용하여 원하는 값을 도출하게 된다. 토양수분 산정에 사용되는 대표적인 위성영상으로는 SMOS (Soil Moisture and Ocean Salinity), ARMS-E(Advanced Microwave Scanning Radiometer - Earth Observing System), ARMS2 (ARMS ver.2) 영상 등이 있으며, 이러한 위성은 해상도가 약 10 km ~ 40 km로 상당이 낮기 때문에 우리나라와 같이 면적이 좁고 지형이 복잡하며 다양한 토지피복이 밀집되어있는 곳에서는 기존 수문 연구에 응용할 수 있는 토양수분 공간지도 산정을 위해 상세화(Downscaling)과정이 필요하다고 판단된다. 따라서 본 연구에서는 ARMS2 토양수분 영상을 MODIS 영상의 식생지수(NDVI, Normalized Difference Vegetation Index), 알베도 및 온도를 활용하여 공간적으로 상세화된 토양 수분 지도를 작성하였고, 유역 내에서 실제 측정되고 있는 토양수분 관측값을 활용하여 상세화기법의 적용성을 검토하였다.

  • PDF

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF