• Title/Summary/Keyword: Soil moisture estimation

Search Result 170, Processing Time 0.025 seconds

Estimation of High-Resolution Soil Moisture based on Sentinel-1A/B SAR Sensors (Sentinel-1A/B SAR 센서 기반 고해상도 토양수분 산정)

  • Kim, Sangwoo;Lee, Taehwa;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.89-99
    • /
    • 2019
  • In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).

Modified Traditional Calibration Method of CRNP for Improving Soil Moisture Estimation (산악지형에서의 CRNP를 이용한 토양 수분 측정 개선을 위한 새로운 중성자 강도 교정 방법 검증 및 평가)

  • Cho, Seongkeun;Nguyen, Hoang Hai;Jeong, Jaehwan;Oh, Seungcheol;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.665-679
    • /
    • 2019
  • Mesoscale soil moisture measurement from the promising Cosmic-Ray Neutron Probe (CRNP) is expected to bridge the gap between large scale microwave remote sensing and point-based in-situ soil moisture observations. Traditional calibration based on $N_0$ method is used to convert neutron intensity measured at the CRNP to field scale soil moisture. However, the static calibration parameter $N_0$ used in traditional technique is insufficient to quantify long term soil moisture variation and easily influenced by different time-variant factors, contributing to the high uncertainties in CRNP soil moisture product. Consequently, in this study, we proposed a modified traditional calibration method, so-called Dynamic-$N_0$ method, which take into account the temporal variation of $N_0$ to improve the CRNP based soil moisture estimation. In particular, a nonlinear regression method has been developed to directly estimate the time series of $N_0$ data from the corrected neutron intensity. The $N_0$ time series were then reapplied to generate the soil moisture. We evaluated the performance of Dynamic-$N_0$ method for soil moisture estimation compared with the traditional one by using a weighted in-situ soil moisture product. The results indicated that Dynamic-$N_0$ method outperformed the traditional calibration technique, where correlation coefficient increased from 0.70 to 0.72 and RMSE and bias reduced from 0.036 to 0.026 and -0.006 to $-0.001m^3m^{-3}$. Superior performance of the Dynamic-$N_0$ calibration method revealed that the temporal variability of $N_0$ was caused by hydrogen pools surrounding the CRNP. Although several uncertainty sources contributed to the variation of $N_0$ were not fully identified, this proposed calibration method gave a new insight to improve field scale soil moisture estimation from the CRNP.

The Estimation of Water Balance at Regional Upland According to RCP8.5 Scenario from 2011 to 2020

  • Shin, Kook-Sik;Cho, Hyun-Sook;Seong, Ki-Young;Park, Tae-Seon;Kang, Hang-Won;Seo, Myung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In order to evaluate water balance at upland according to RCP8.5 climate change scenario distributed by Korean Meteorological Administration (KMA), we simulated soil moisture using estimation model, called AFKAE0.5 for 66 sites from 2011 to 2020, and established the water balance maps. The amount of annual average precipitation by RCP8.5 scenario was highest in 2016 as recorded 2,062 mm and lowest in 2011 with 1,134 mm. As result of analysis for monthly precipitation and runoff, the amounts of precipitation and runoff have been especially intensive in July in 2014, 2016, 2019, and 2020. Overall, the area of Kyeongbuk and Gyeonggi was estimated more dried status of soil compared with precipitation. Except 2015 and 2020, soil water balance was recorded as negative value in other years which was calculated by subtracting output from input. The status of soil moisture was the most dry in 2020 among those in other years.

Soil Moisture Modelling at the Topsoil of a Hillslope in the Gwangneung National Arboretum Using a Transfer Function (전이함수를 통한 광릉 산림 유역의 토양수분 모델링)

  • Choi, Kyung-Moon;Kim, Sang-Hyun;Son, Mi-Na;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.2
    • /
    • pp.35-46
    • /
    • 2008
  • Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.

Estimation of Soil Moisture and Irrigation Requirement of Upland using Soil Moisture Model applied WRF Meteorological Data (WRF 기상자료의 토양수분 모형 적용을 통한 밭 토양수분 및 필요수량 산정)

  • Hong, Min-Ki;Lee, Sang-Hyun;Choi, Jin-Yong;Lee, Sung-Hack;Lee, Seung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.173-183
    • /
    • 2015
  • The aim of this study was to develop a soil moisture simulation model equipped with meteorological data enhanced by WRF (Weather Research and Forecast) model, and this soil moisture model was applied for quantifying soil moisture content and irrigation requirement. The WRF model can provide grid based meteorological data at various resolutions. For applicability assessment, comparative analyses were conducted using WRF data and weather data obtained from weather station located close to test bed. Water balance of each upland grid was assessed for soils represented with four layers. The soil moisture contents simulated using the soil moisture model were compared with observed data to evaluate the capacity of the model qualitatively and quantitatively with performance statistics such as correlation coefficient (R), coefficient of determination (R2) and root mean squared error (RMSE). As a result, R is 0.76, $R^2$ is 0.58 and RMSE 5.45 mm in soil layer 1 and R 0.61, $R^2$ 0.37 and RMSE 6.73 mm in soil layer 2 and R 0.52, $R^2$ 0.27 and RMSE 8.64 mm in soil layer 3 and R 0.68, $R^2$ 0.45 and RMSE 5.29 mm in soil layer 4. The estimated soil moisture contents and irrigation requirements of each soil layer showed spatiotemporally varied distributions depending on weather and soil texture data incorporated. The estimated soil moisture contents using weather station data showed uniform distribution about all grids. However the estimated soil moisture contents from WRF data showed spatially varied distribution. Also, the estimated irrigation requirements applied WRF data showed spatial variabilities reflecting regional differences of weather conditions.

Development of the Estimation System for Agricultural Water Demand (농업용수 수요량 산정 시스템 개발)

  • 이광야;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • To estimate agricultural water demand, many factors such as weather, crops, soil, cultivation method, crop coefficient and cultivation area, etc. must be considered. But it is not easy to estimate water demand in consideration of these factors, which are variable according to growth stage and regional environment. This study provides estimation system for agricultural water demand(ESAD) in order to estimate water demand easily and accurately, and arranges all factors needed for water demand estimation. This study identifies the application of estimation system for agricultural water demand with the data observed in the other studies, and analyzes nationwide agricultural water demand. The results are as follows. 1) The practice of different rice cultivation in the paddy field resulted in different water demands. Water depth and infiltration ratio in paddy are the most important factors to estimate water demand. The water depths in paddy simulated by ESAD is very similar to the observed ones. 2) Water demand of upland crops varies with the crops, soil, etc.. Effective rainfall estimated by daily routing of soil moisture varies according to the crops, soil, and effective soil zone(root depth). As crop root become grown, effective rainfall and an amount of irrigation water has been increased. 3) The current unit water demand of upland crops applied as 500mm or 550mm to estimate water demand does not reflect the differences caused by the crops, regional surrounding, weather condition, etc. Results from ESAD for the estimation of water demand of upland crops show that ESAD can simulate the actual field conditions reasonably because it simulates the actual irrigation practices with the daily routing of soil moisture.

  • PDF

Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data (위성토양수분과 지점강우량을 이용한 지역 선행습윤조건 분석)

  • Sunwoo, Wooyeon;Kim, Daeun;Hwang, Seokhwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.587-596
    • /
    • 2014
  • Soil moisture is one of the most important interests in hydrological response and the interaction between the land surface and atmosphere. Estimation of Antecedent Wetness Conditions (AWC) which is soil moisture condition prior to a rainfall in the basin should be considered for rainfall-runoff prediction. In this study, Soil Wetness Index (SWI), Antecedent Precipitation Index ($API_5$), remotely sensed Soil Moisture ($SM_{rs}$), and 5 days ground Soil Moisture ($SM_{g5}$) were selected to estimate the AWC at four study area in the Korean Peninsula. The remotely sensed soil moisture data were taken from the AMSR-E soil moisture archive. The maximum potential retention ($S_{obs}$) was obtained from direct runoff and rainfall using Soil Conservation Service-Curve Number (SCS-CN) method by rainfall data of 2011 for each study area. Results showed the great correlations between the maximum potential retention and SWI with a mean correlation coefficient which is equal to -0.73. The results of time length representing the time scale of soil moisture showed a gap from region to region. It was due to the differences of soil types and the characteristics of study area. Since the remotely sensed soil moisture has been proved as reasonable hydrological variables to predict a wetness in the basin, it should be continuously monitored.

Improving Accuracy of Soil Property Measurements by NIR Spectroscopy

  • Ryu, Kwan Shig;Cho, Rae Kwang;Park, Woo Churl;Kim, Bok Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.177-179
    • /
    • 2001
  • Traditional wet chemical methods for testing of soil properties require extensive time and labor, and cause the discharge of pollutants, making them undesirable for routine soil analyses. This research was conducted to improve the accuracy of soil properties in soil fertility assessments. A total of 140 finely ground soil samples were used to obtain accurate calibrations and validation for estimating soil moisture, OM, and T-N. Finely ground soil samples satisfied the improved accuracy for routine NIR measuring of the field soils. The results indicated that NIR spectroscopy could be used as a routine method for quantitatively determining OM, moisture, and T-N of field soil, although this technique requires many combinations of sample pretreatments and data manipulations to obtain optimal predictions.

  • PDF

Effect of particle size and scanning cup type for near infrared reflection on the soil property measurement

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • The purpose of this research was to find out suitable soil sample preparation and sample holding tools for NIR reflection radiation for estimating soil components. NIR reflectance was scanned at 2nm intervals from 1,100 to 2,500nm with an InfraAlyzer 500(Bran+Luebbe Co.). Coarse(2.0mm) and fine(0.5mm) soil sample and various sample holding tools were used to obtain mean diffuse reflection of the soil for the calibration and validation of the calibration set in estimating moisture, organic matter and total nitrogen of the soils. Multiple linear regression was used to obtain the best correlation of NIR spectroscopy method. Correlation of NIR spectroscopy method. Correlation of NIR spectra for finely and coarsely sized soil did not show much difference. The standard errors of prediction(SE) using different types of sample holding tools for organic matter, total nitrogen and soil moisture were better than 0.765, 0.041 and 0.63% respectively. From the results it can be concluded that NIR spectroscopy with flow type cell could be used as a fast routine testing method in quantitative determination of organic matter, total nitrogen and soil moisture.

RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST (Terra MODIS NDVI 및 LST 자료와 RNN-LSTM을 활용한 토양수분 산정)

  • Jang, Wonjin;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.123-132
    • /
    • 2019
  • This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.