• Title/Summary/Keyword: Soil mixing method

Search Result 195, Processing Time 0.022 seconds

Precipitation-Filtering Method for Reuse of Uranium Electrokinetic Leachate (우라늄 오염 동전기 침출액의 재이용을 위한 침전-여과 방법)

  • Kim, Gye-Nam;Shon, Dong-Bin;Park, Hye-Min;Kim, Ki-Hong;Lee, Ki-Won;Moon, Jeik-kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • A large volume of uranium electrokinetic leachate has been generated during the electrokinetic decontamination to remove uranium from contaminated soil. The treatment technology for the reuse of the uranium leachate was developed. The concentration of uranium in the generated uranium leachate was 180 ppm and concentrations of Mg(II), K(I), Fe(II), and Al(III) ions ranged from 20 ppm to 1,210 ppm. The treatment process for uranium leachate consisted mainly of mixing and cohesion, precipitation, concentration, and filtration. In order to obtain the pH=11 of a precipitate solution, the calcium hydroxide needs to be 3.0g/100ml and the sodium hydroxide needed to be 2.7g/100ml. The results of several precipitation experiments showed that a mixture of NaOH+0.2g alum+0.15g magnetite was an optimal precipitant for filtration. The average particle size of precipitate with NaOH+alum+0.15g magnetite was $600\;{\mu}m$. Because the total value of metal concentrations in supernatant at pH=9 was the smallest, sodium hydroxide should be added with 0.2g alum and 0.15g magnetite for pH=9 of leachate.

A Study of the Wall Repair Record and Construction Technology of Geungnakbojeon Hall at Muwisa Temple in Gangjin (강진 무위사 극락보전의 벽체 수리 기록과 시기별 시공기술 고찰)

  • Hong, Eunki
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.140-155
    • /
    • 2020
  • The purpose of this study is to examine historical wall repair details through analysis of repair data and administrative documents of the Paradise Conservation of Gangjin Muwisa Temple. In addition, the purpose of the project is to examine the differences and commonalities between the materials and construction technology used in the building's walls. The data for repair work conducted in 1935, 1956, and 1982~3 was analyzed and the results of the research were as follows. First, data for the wall construction conducted in 1935 during the dismantling repair showed that the interior structure of the wall was found to follow that of the original, but the first, second, and final layers used different materials. The composition material of the wall consisted of clay, lime and sand, the second layer used sand and plaster, and the last layer used plaster and seaweed paste. Second, the structure of the wall interior, which was found during the 1956 repairs, consisted of wood woven horizontally and vertically. It was confirmed that this had been installed diagonally using a rope. Third, the 1982~3 repair work confirmed that the wall's interior construction conformed to the original method. The lime-sand wall was formed by mixing slacked lime, sand, soil, fodder, and seaweed grass. Fourth, when the various repairs are considered as a whole, it is clear that the interior structure of the wall was made more than 1900 years ago, and the material used in the wall changed in 1935. Fifth, the materials used for each repair differed, but each project had a common view of cultural heritage repair principles in sections that stated the significance of each project.

Study on the Heat Transfer Phenomenon around Underground Concrete Digesters for Bigas Production Systems (생물개스 발생시스템을 위한 지하매설콘크리트 다이제스터의 열전달에 관한 연구)

  • 김윤기;고재균
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 1980
  • The research work is concerned with the analytical and experimental studies on the heat transfer phenomenon around the underground concrete digester used for biogas production Systems. A mathematical and computational method was developed to estimate heat losses from underground cylindrical concrete digester used for biogas production systems. To test its feasibility and to evaluate thermal parameters of materials related, the method was applied to six physical model digesters. The cylindrical concrete digester was taken as a physical model, to which the model,atical model of heat balance can be applied. The mathematical model was transformed by means of finite element method and used to analyze temperature distribution with respect to several boundary conditions and design parameters. The design parameters of experimental digesters were selected as; three different sizes 40cm by 80cm, 80cm by 160cm and l00cm by 200cm in diameter and height; two different levels of insulation materials-plain concrete and vermiculite mixing in concrete; and two different types of installation-underground and half-exposed. In order to carry out a particular aim of this study, the liquid within the digester was substituted by water, and its temperature was controlled in five levels-35。 C, 30。 C, 25。 C, 20。C and 15。C; and the ambient air temperature and ground temperature were checked out of the system under natural winter climate conditions. The following results were drawn from the study. 1.The analytical method, by which the estimated values of temperature distribution around a cylindrical digester were obtained, was able to be generally accepted from the comparison of the estimated values with the measured. However, the difference between the estimated and measured temperature had a trend to be considerably increased when the ambient temperature was relatively low. This was mainly related variations of input parameters including the thermal conductivity of soil, applied to the numerical analysis. Consequently, the improvement of these input data for the simulated operation of the numerical analysis is expected as an approach to obtain better refined estimation. 2.The difference between estimated and measured heat losses was shown to have the similar trend to that of temperature distribution discussed above. 3.It was found that a map of isothermal lines drawn from the estimated temperature distribution was very useful for a general observation of the direction and rate of heat transfer within the boundary. From this analysis, it was interpreted that most of heat losses is passed through the triangular section bounded within 45 degrees toward the wall at the bottom edge of the digesten Therefore, any effective insulation should be considered within this region. 4.It was verified by experiment that heat loss per unit volume of liquid was reduced as the size of the digester became larger For instance, at the liquid temperature of 35˚ C, the heat loss per unit volume from the 0. 1m$^3$ digester was 1, 050 Kcal/hr m$^3$, while at for 1. 57m$^3$ digester was 150 Kcal/hr m$^3$. 5.In the light of insulation, the vermiculite concrete was consistently shown to be superior to the plain concrete. At the liquid temperature ranging from 15。 C to 350 C, the reduction of heat loss was ranged from 5% to 25% for the half-exposed digester, while from 10% to 28% for the fully underground digester. 6.In the comparison of heat loss between the half-exposed and underground digesters, the heat loss from the former was fr6m 1,6 to 2, 6 times as much as that from the latter. This leads to the evidence that the underground digester takes advantage of heat conservation during winter.

  • PDF

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

Preparation of Birnessite (δ-MnO2) from Acid Leaching Solution of Spent Alkaline Manganese Batteries and Removals of 1-naphthol (폐 알칼리망간전지의 산 침출액으로부터 버네사이트(δ-MnO2)의 제조 및 1-naphthol 제거)

  • Eom, Won-Suk;Lee, Han-Saem;Rhee, Dong-Seok;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.603-610
    • /
    • 2016
  • This work studies the synthesis of birnessite (${\delta}-MnO_2$), a catalyst of oxidative-coupling reactions, from the powder of spent alkaline manganese batteries (SABP, <8 mesh) and evaluate its reactivity for 1-naphthol (1-NP) removals. Manganese oxides using commercial reagents ($MnSO_4$, $MnCl_2$) and the acid birnessite (A-Bir) by McKenzie method were also synthesized, and their crystallinity and reactivity for 1-NP were compared with one another. 96% Mn and 98% Zn were extracted from SABP by acid leaching at the condition of solid/liquid (S/L) ratio 1:10 in $1.0M\;H_2SO_4+10.5%\;H_2O_2$ at $60^{\circ}C$. From the acid leaching solution, 69% (at pH 8) and 94.3% (pH>13) of Mn were separated by hydroxide precipitation. Optimal OH/Mn mixing ratio (mol/mol) for the manganese oxide (MO) synthesis by alkaline (NaOH) hydrothermal techniques was 6.0. Under this condition, the best 1-NP removal efficiency was observed and XRD analysis confirmed that the MOs are corresponding to birnessite. Kinetic constants (k, at pH 6) for the 1-NP removals of the birnessites obtained from Mn recovered at pH 8 (${Mn^{2+}}_{(aq)}$) and pH>13 ($Mn(OH)_{2(s)}$) are 0.112 and $0.106min^{-1}$, respectively, which are similar to that from $MnSO_4$ reagent ($0.117min^{-1}$). The results indicated that the birnessite prepared from the SABP as a raw material could be used as an oxidative-coupling catalyst for removals of trace phenolic compounds in soil and water, and propose the recycle scheme of SAB for the birnessite synthesis.