• Title/Summary/Keyword: Soil minerals

Search Result 413, Processing Time 0.028 seconds

Analysis of the Effect of Forest Fires on the Mineralogical Characteristics of Soil (산불 영향에 따른 토층의 광물학적 특성 변화에 관한 연구)

  • Man-Il Kim;Chang-Oh Choo
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Forest fires increase the risk of subsequent soil erosion and mass movement in burned areas, even under rainfall conditions below landslide alert thresholds, by destroying plants and vegetation and causing changes to soil properties. These effects of forest fires can alter runoff in burned areas by altering soil composition, component minerals, soil water repellency, soil mass stability, and soil fabric. Heat from forest fires not only burns shallow organic matter and plants but also spreads below the surface, affecting soil constituents including minerals. This study analyzed X-ray diffraction and physical properties of topsoil and subsoil obtained from both burned and non-burned areas to identify the composition and distribution of clay minerals in the soil. Small amounts of mullite, analcite, and hematite were identified in burned soils. Vermiculite and mixed-layer illite/vermiculite (I/V) were found in topsoil samples from burned areas but not in those from non-burned areas. These findings show changes in soil mineral composition caused by forest fires. Expansive clay minerals increase the volume of soil during rainfall, degrading the structural stability of slopes. Clay minerals generated in soil in burned areas are therefore likely to affect the long-term stability of slopes in mountainous areas.

Behaviors of Desorption Agents During Removal of Cs From Clay Minerals and Actual Soil

  • Park, Chan Woo;Kim, Ilgook;Yoon, In-Ho;Yang, Hee-Man;Seo, Bum-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.39-49
    • /
    • 2021
  • The behaviors of various desorption agents were investigated during the desorption of cesium (Cs) from samples of clay minerals and actual soil. Results showed that polymeric cation exchange agents (polyethyleneimine (PEI)) efficiently desorbed Cs from expandable montmorillonite, whereas acidic desorption solutions containing HCl or PEI removed considerable Cs from hydrobiotite. However, most desorption agents could desorb only 54% of Cs from illite because of Cs's specific adsorption to selective adsorption sites. Cs desorption from an actual soil sample containing Cs-selective clay mineral illite (< 200 ㎛) and extracted from near South Korea's Kori Nuclear Power Plant was also investigated. Considerable adsorbed 137Cs was expected to be located at Cs-selective sites when the 137Cs loading was much lower than the sample's cation exchange capacity. At this low 137Cs loading, the total Cs amount desorbed by repeated washing varied by desorption agent in the order HCl > PEI > NH4+, and the highest Cs desorption amount achieved using HCl was 83%. Unlike other desorption agents with only cation exchange capabilities, HCl can attack minerals and induce dissolution of metallic elements. HCl's ability to both alter minerals and induce H+/Cs+ ion exchange is expected to promote Cs desorption from actual soil samples.

Source-Sink Partitioning of Mineral Nutrients and Photo-assimilates in Tomato Plants Grown under Suboptimal Nutrition

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Yun, Hongbae;Ha, Sangkeun;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.652-658
    • /
    • 2013
  • A huge number of greenhouse soils in Korea have accumulated mineral elements which induce many nutritional and pathological problems. The present study was performed to the effects of the reduced fertilization on plant growth, and uptake and partitioning of minerals (N, P, K) and soluble carbohydrates using highly minerals-accumulated farmer's greenhouse soil. On the basis of the recommended application for tomato crop, the application rates of N, P and K were 110(50%)-5.2(5%)-41.5(35%)kg $ha^{-1}$, respectively, using Hoagland's nutrient solution. Tomato growth rates during the whole experiment were not significant between treatments, but it was found that a decrease in daily growth represented after 60 days of treatment (DAT). The reduced application led to a drastic decrease in the concentration of N, P and K in fruits, and, thus, this resulted in lower uptake after 40 DAT. The lower phloem export and utilization of soluble carbohydrates caused an accumulation of extra-carbohydrates in leaves, stems and fruits in the reduced application. The reduced fertilization induced the capture of N, P and K in leaves and of soluble carbohydrates in stems compared to the conventional application. In this study, we suggest that it is possible to delay the first fertigation time in minerals-accumulated soils without an adverse impact on crop growth, but it is necessary to regularly monitor mineral status in soil to ensure a balanced uptake, synthesis and partitioning of minerals and carbohydrates.

Comparison of Microscopic Method with X-ray Diffraction Analysis of Rock Minerals (주요암석(主要岩石) 광물(鑛物)에 대(對)한 현미경적분석(顯微鏡的分析)과 X-선회절분석(線回折分析)과 비교(比較))

  • Choi, Dae Ung;Hwang, Kyung Sun;Shin, Jae Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.253-255
    • /
    • 1973
  • Microscopic method was compared with X-ray diflraction analysis for the identification of rockforming minerals using 11 main rock samples in Korea. 1. There was no difference between X-ray diffraction analysis and microscopic one in major minerals, but some accessary minerals. 2. The rock-forming minerals of main rocks presented in this study occured almost in crystalline state so that they could be easily identified by X-ray analysis alone.

  • PDF

Distributions and Cyclings of Nitrogen, Phosphorus and Potassium in Korean Alder and Oak Stands (물오리나무와 상수리나무 숲의 질소, 인 및 가리의 분배와 순환)

  • 문형태
    • Journal of Plant Biology
    • /
    • v.20 no.3
    • /
    • pp.109-118
    • /
    • 1977
  • Seasonal distribution of N, P and K contents and their cycling were studied in Korean oak (Quercus acutissima) and Korean alder (Alnus sibirica) stands in central part of Korean peninsula. The amounts of three minerals were high in young leaves but gradually decreased with the process of leaf development in both stands. The amounts of minerals in the branches, trunks and roots were decreased in summer, however, they increased again in autumn. Seansonal changes of these minerals were not significant in the two stands. The amounts of phosphorus and potassium in plant and soil were higher in the oak stand than the alder one, but those of nitrogen were reversed. The amounts of minerals absorbed during one year were greater in the oak stand than in the alder one, but those returned into soil through mineralization of litter were less in the former than in the latter. The nutrient requirements of the oak stand were greater than the alders, but the cycling rate, the ratio of the amount of minerals absorbed to returned, was opposite.

  • PDF

Effect of Minerals surface characteristics On Reduction Dehalogenation of chlorination solvents in water-FeS/FeS$_2$ system

  • 김성국;허재은;박세환;장현숙;박상원;홍대일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.108-111
    • /
    • 2000
  • FeS/FeS$_2$ minerals have been known to be potentially useful reductant to the removal of common organic contaminants in groundwater and soil. This research is aimed at improving our understanding of factors affecting the pathways and rates of reductive transformation of Hexachloroethane by catalytical iron minerals in natural system. Hexachloroethane is reduced by FeS/FeS$_2$ minerals under anaerobic condition to tetrachloroethylene and trichloroethylene with pentachloroethyl radical as the intermediate products. The kinetics of reductive transformations of the Hexachloroethane have been investigated in aqueous solution containing FeS, FeS$_2$. The proposed reduction mechanism for the adsorbed nitrobenzene involves the electron donor-acceptor complex as a precursor to electron transfer. The adsorbed Hexachloroethane undergo a series of electron transfer, proton transfer and dehydration to achieve complete reduction. It can be concluded that the reductive transformation reaction takes place at surface of iron-bearing minerals and is dependent on surface area and pH. Nitrobenzene reduction kinetics is affected by reductant type, surface area, pH, the surface site density, and the surface charge. FeS/FeS$_2$-mediated reductive dechlorination may be an important transformation pathway in natural systems.

  • PDF

Implication of Soil Minerals on Formation of Impermeable Layers in Saprolite Surface-Piled Upland Fields at Highland

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.284-289
    • /
    • 2014
  • Farmers in highlands in South Korea pile up 20 to 30 cm of saprolites, mostly granite- or granite-gneiss-weathered materials, on surface of arable lands every three to five years to compensate eroded soil and sometimes to discontinue soil-borne diseases. Immediate increases of infiltration and percolation rates are expected with coarse textured saprolites while soil drainage becomes poorer in a long-term. In this study, we analyzed mineralogical characteristics and micro-morphology of plow pan to investigate processes making impermeable layers. Soil samples were collected from plow pan, usually located at approximately 20 cm soil depth and at the lower part of piled saprolites, in arable lands in Hoenggye 5-ri, Daekwanryeong-myeon, Gangwon-do (N37.7, E128.7) in which saprolites were added 2, 4, and 8 years ago; saprolites were transported from similar areas. The saturated hydraulic conductivity decreased over time. Based on soil thin section pedography, quartz and feldspar accounted for a majority of minerals. The size of feldspar decreased and macropores became filled with clay or silt particles over time, which implies that macropores were packed with particles weathered from feldspar. The X-ray diffraction (XRD) analysis indicated that intensity of feldspar decreased over time and the reverse was true for kaolinite and illite, indicating that feldspar and mica weathering induced formation of kaolinite and illite. Conclusively, deteriorated drainage by formation of impermeable layers in farms with piled saprolites was caused by accumulation of clay minerals such as kaolinite and illite in macropores; illite and kaolinite can be formed by weathering of mica and feldspar, respectively.

Clay Activity and Physico-chemical Properties of Korean Soils with Different Clay Minerals (점토광물 조성이 상이한 토양의 점토활성도와 이화학적 특성)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won;Hyun, Byung-Keun;Moon, Yong-Hee;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.837-843
    • /
    • 2010
  • This research investigated classification of clay activity degree by different clay mineral components. Based on compositions of different clay and oxide minerals within 390 soil series in Korea, 7 soils were selected to analyze for CEC and specific surface area of clay minerals. As a result, soils were mainly composed with Chlorite originated from sandstone, Smectite originated from Andesite porphyry and combination of Allophane and Ferrihydrite originated from volcanic ash, if the ratio of CEC value to clay content (degree of clay activity) was greater than 0.7. If the degree of clay activity was ranged between 0.3 and 0.7, soils were composed mainly with Kaolin originated from anorthite. Soils with this ratio also was composted with combinations of Kaolin, Illite and Vermiculite originated with river deposits. When the degree of the activity was less than 0.3, soils were commonly red-yellowish color and composed with two different minerals. One type of composition was Kaolin originated from granite and granite gneiss and the soils contained Geothite and Hematite. The other type was composited mainly with Illite and Vermiculite minerals originated from granite. These soils contained Gibbsite, Geothite and Hematite. The degree of clay activity was highly related with CEC and specific surface area. The greater degree of the activity displayed greater values of clay CEC and specific surface area. It is not easy to measure actual quantity and compositions of clay minerals, while the degree of clay activity can be measured from routine soil analyses. As a conclusion, the degree of clay activity may be not just a simple but also powerful tool to estimate physical-chemical properties of soils and to evaluate the soil classification in Korean soils.

Influence of Soil and Forage Minerals on Buffalo (Bubalus bubalis) Parturient Haemoglobinuria

  • Akhtar, M.Z.;Khan, A.;Sarwar, M.;Javaid, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.393-398
    • /
    • 2007
  • The present study was carried out to investigate the serum minerals profile in buffaloes (Bubalus bubalis) suffering from parturient haemoglobinuria (PHU) along with minerals profile of soils and fodders from the disease prone areas and their interrelationships. Serum samples were collected from 60 each of healthy and PHU affected buffaloes randomly selected from field cases. Serum samples were collected from each animal. Fifty composite soil samples were collected where PHU was prevalent. Fifty samples of fodders including leaves and stems being fed to the diseased buffaloes were collected. The difference in the levels of calcium and potassium between upper and lower soil surface of disease prone areas under study were statistically non-significant. The mean values of phosphorous, copper, iron, selenium and molybdenum in upper soil surface were significantly (p<0.05) higher than in lower soil surface. None of the fodders offered to the diseased animals met the dietary requirements of phosphorus and copper whereas none of the fodders was deficient in potassium, iron and selenium rather were having excess of potassium, iron and selenium. The concentration of calcium was adequate in lucerne, berseem, sarson and sorghum, while maize, sugarcane and wheat straw did not meet the required levels for dairy animals. Molybdenum contents in all fodders were adequate to meet the dietary requirements of the dairy buffaloes. Serum phosphorus, copper and selenium were significantly (p<0.001) lower whereas potassium, iron and molybdenum in buffaloes suffering from PHU were significantly (p<0.001) higher than in healthy buffaloes. It was concluded that phosphorous deficient soils play a major role by transferring this deficiency to plants and ultimately reaching to animals where hypophosphataemia is a consistent finding.

Impact of Residual Hydrofluoric Acid on Leaching of Minerals and Arsenic from Different Types of Geological Media (잔류 불산에 의한 모델 지질토양시료의 광물 용해 및 비소 용출 특성)

  • Jeon, Pilyong;Moon, Hee Sun;Shin, Doyun;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.23-29
    • /
    • 2018
  • This study explored secondary effects of the residual hydrofluoric acid (HF) after a hypothetical acid spill accident by investigating the long-term dissolution of minerals and leaching of pre-existing arsenic (As) from two soil samples (i.e., KBS and KBM) through batch and column experiments. An increase in the HF concentration in both soil samples resulted in a dramatic increase in the release of major cations, especially Si. However, the amounts of mineral dissolved were dependent on the soil type and mineral characteristics. Compared to the KBM soil, relatively more Ca, Mg and Si were dissolved from the KBS soil. The column experiment showed that the long-term dissolution rates of the minerals are closely associated with the acid buffering capacity of the two soils. The KBM soil had relatively higher effluent pH values compared to the KBS soil. Also, more As was leached from the KBM soil, with a more amorphous hydrous oxide-bound As fraction. These results suggest that the potential of heavy metal leaching by the residual acid after an acid spill will be influenced by heavy metal speciation and mineral structure in the affected soil.