• 제목/요약/키워드: Soil microbial fertilizer

검색결과 260건 처리시간 0.032초

Effect of Long Term Fertilization on Microbial Biomass, Enzyme Activities, and Community Structure in Rice Paddy Soil

  • Lee, Chang Hoon;Kang, Seong Soo;Jung, Ki Youl;Kim, Pil Joo
    • 한국토양비료학회지
    • /
    • 제46권6호
    • /
    • pp.487-493
    • /
    • 2013
  • The effects of long-term fertilization on soil biological properties and microbial community structure in the plough layer in a rice paddy soil in southern Korea were investigated in relation to the continuous application of chemical fertilizers (NPK), straw based compost (Compost), combination these two (NPK + Compost) for last 40 years. No fertilization plot (Control) was installed for comparison. Though fertilization significantly improved rice productivity over control, the long-term fertilization of NPK and compost combination was more effective on increasing rice productivity and soil nutrient status than single application of compost or chemical fertilizer. All fertilization treatments had shown significant improvement in soil microbial properties, however, continuous compost fertilization markedly increased soil enzyme and microbial activities as compared to sole chemical fertilization. Results of microbial community structure, evaluated by EL-FAME (ester-linked fatty acid methyl esters) method, revealed big difference among Control, NPK, and Compost. However, both Compost and Compost+NPK treatments belonged to the same cluster after statistical analysis. The combined application of chemical fertilizer and organic amendments could be more rational strategy to improve soil nutrient status and promote soil microbial communities than the single chemical fertilizer or compost application.

Effect of Integrated Use of Organic and Fertilizer N on Soil Microbial Biomass Dynamics, Turnover and Activity of Enzymes under Legume-cereal System in a Swell-shrink (Typic Haplustert) Soil.

  • Manna, M.C.;Swarup, A.
    • 한국환경농학회지
    • /
    • 제19권5호
    • /
    • pp.375-381
    • /
    • 2000
  • Quantifying the changes of soil microbial biomass and activity of enzymes are important to understand the dynamics of active soil C and N pools. The dynamics of soil microbial biomass C and N and the activity of enzymes over entire growth period of soybean-(Glycine max (L) Merr.)-wheat (Triticum aestivum L.) sequence on a Typic Haplustert as influenced by organic manure and inorganic fertilizer N were investigated in a field experiment. The application of farmyard manure at 4 to 16 $Mg{\cdot}ha^{-1}\;y^{-1}r^{-1}$ along with fertilizer nitrogen at 50 or 180 $kg{\cdot}ha^{-1}$ increased the mean soil microbial biomass from 1.12 to 2.05 fold over unmanured soils under soybean-wheat system. Irrespective of organic and chemical fertilizer N application, the soil microbial biomass was maximum during the first two months at active growing stage of the crops and subsequently declined with crop maturity. The mean annual microbial activity was significantly increased when manure and chemical fertilizer at 8 $Mg{\cdot}ha^{-1}$ and 50/180 N $kg{\cdot}ha^{-1}$, respectively were applied. The C turnover rate decreased by 47 to 72 % when the level of farmyard manure was increased from 4 to 8 and 16 $Mg{\cdot}ha^{-1}$. There were significant correlations between biomass C, available N, dehydrogenase, phosphatase and yield of the crops.

  • PDF

Microbial Community Structure of Paddy Soil Under Long-term Fertilizer Treatment Using Phospholipid Fatty Acid (PLFA) Analysis

  • Daquiado, Aileen Rose;Kim, Tae Young;Lee, Yong Bok
    • 한국토양비료학회지
    • /
    • 제46권6호
    • /
    • pp.474-481
    • /
    • 2013
  • Understanding the microbial community structure of agricultural soils is important for better soil management in order to improve soil quality. Phospholipid fatty acid analysis has been popularly used in determining the microbial community structure in different ecosystems. The microbial community structure of paddy soil under long-term fertilizer treatments was investigated after 45 years using PLFA analysis. Treatments were control (no fertilization, Con), compost (COM), NPK, NPK+compost (NPKC), PK, NK, and NP. Soil chemical properties were mainly affected by the addition of compost and inorganic P fertilizer. Total nitrogen and organic matter contents were significantly higher in treatments with compost while available $P_2O_5$ and exchangeable calcium were significantly higher in treatments with added inorganic P fertilizer. It was found that microbial communities were responsive to the different fertilizer treatments. PLFA results showed that the soils were dominated by gram-negative bacteria, followed by the actinomycetes, then gram-positive bacteria, and fungi. Principal component analysis of the soil chemical properties and PLFA composition proved to be a more reliable tool because it was more responsive to the changes in soil chemical properties.

Effects of Continuous Application of Green Manures on Microbial Community in Paddy Soil

  • Kim, Sook-Jin;Kim, Kwang Seop;Choi, Jong-Seo;Kim, Min-Tae;Lee, Yong Bok;Park, Ki-Do;Hur, Seonggi
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.528-534
    • /
    • 2015
  • Green manure crops have been well recognized as the alternative for chemical fertilizer, especially N fertilizer, because of its positive effect on soil and the environment. Hairy vetch and green barley are the most popular crops for cultivation of rice in paddy field. This study was conducted to evaluate effects of hairy vetch and green barley on soil microbial community and chemical properties during short-term application (three years). For this study, treatments were composed of hairy vetch (Hv), green barley (Gb), hairy vetch + green barley (Hv+Gb), and chemical fertilizer without green manure crops (Con.). Hv+Gb treatment showed the highest microbial biomass among treatments. Principal component analysis (PCA) showed that PC1 (73.0 %) was affected by microbial biomass and PC2 (21.5 %) was affected by fungi, cy19:0/18:$1{\omega}7c$ (stress indicator). Combined treatment with hairy vetch and green barley could be more efficient than green manure crop treatment as well as chemical fertilizer treatment for improvement of soil microorganisms.

Enzyme and Microbial Activities in Paddy Soil Amended Continuously with Different Fertilizer Systems

  • Gadagi, Ravi;Park, Chang-Young;Im, Geon-Jae;Lee, Dong-Chang;Chung, Jong-Bae;Singvilay, Olayvanh;Sa, Tong-Min
    • 한국환경농학회지
    • /
    • 제20권5호
    • /
    • pp.325-329
    • /
    • 2001
  • Soil enzyme and microbial activities are affected by fertilizer and compost applications and can be used as sensitive indicators of ecological stability. Microbial population and soil enzymes viz., dehydrogenase, urease, acid phosphatase and aryl-sulphatase were determined in the long-term fertilizer and compost applied paddy soil. Soil samples were collected from the four treatments (control, compost, NPK and compost+NPK). Long-term NPK+compost application significantly increased activities of urease, dehydrogenase and acid phosphatase than all other treatments. The compost application enhanced activities of urease, dehydrogenase and acid phosphatase than the NPK application. However, arylsulfatase activity was not significantly different between compost and fertilizer application. The highest microbial population was recorded in the NPK+compost treatment. The compost application also resulted in higher microbial population than the NPK application. The above results indicate that ecological stability could be maintained by application of compost alone or with NPK.

  • PDF

신규 유기농경지 토양의 유기물 공급이 토양 미생물군집에 미치는 영향 (Effects of Organic Matter Application on Soil Microbial Community in a Newly Reclaimed Soil)

  • 안난희;옥정훈;조정래;신재훈;남홍식;김석철
    • 한국유기농업학회지
    • /
    • 제23권4호
    • /
    • pp.767-779
    • /
    • 2015
  • 본 연구에서는 신규 개간지 유기농경지에서 가축분퇴비와 녹비작물을 2년간 연용하였을 때 유기물에 의한 밭 토양미생물 군집에 미치는 영향을 평가하고자 수행하였다. 가축분 퇴비와 녹비를 연용한 처리구는 화학비료와 무비 처리구에 비해 유기물 함량이 증가하였다. 세균과 사상균 개체수는 유기물을 연용 할수록 유기물 처리구와 화학비료 그리고 무비 처리구간의 유의적인 차이를 나타내었다. 또한 가축분 퇴비와 녹비 연용으로 토양 미생물체량은 모든 처리구가 증가하였으며 NPK와 무비구에 비해 퇴비, 녹비 처리구에서 높게 나타났다. 유기물 연용에 의한 토양미생물 군집의 기능적 다양성 분석에서 가축분 퇴비, 녹비 처리구가 화학비료나 무비구에 비해 기질 이용도가 유의적으로 증가하였으며 유기물 처리구가 화학비료나 무비구에 비해 높은 종 다양성을 나타냈다. 그리고 주성분 분석에서 제2주성분에 의해 유기물 처리구와 그렇지 않은 화학비료, 무비구로 분리되었다.

굴패화석 비료 시용이 토양의 생물학적 활성에 미치는 영향 (Effect of Oyster Shell Meal on Improving Soil Microbiological Activity)

  • 이주영;이창훈;하병연;김석철;이도경;김필주
    • 한국토양비료학회지
    • /
    • 제38권5호
    • /
    • pp.281-286
    • /
    • 2005
  • 굴패각으로부터 제조된 굴패화석 비료 시용이 토양의 미시환경에 미치는 영향을 조사하기 위해 토양 내 microbial biomass 함량과 주요 토양효소의 활성을 조사하여 다음과 같은 결과를 얻었다. 굴패화석 시용량이 증가함에 따라 토양 내 microbial biomass C, N, P 함량이 크게 증가하였으며, 양분의 가급화와 관련 있는 주요 토양효소의 활성이 크게 증진되었다. 본 연구조건에서 굴패화석 시용에 따른 산성토양의 pH 개선은 microbial biomass P 함량 증진과 urease, ${\beta}$-glucosidase, alkaline phosphomonesterase의 활성증진에 직접적으로 영향을 주었으며, microbial biomass P와 phosphomonoesterase 활성증진은 유효인산 함량증진에 직접적으로 영향을 준 것으로 조사되었다. 결론적으로 약산성의 공시토양에 알카리성 제재인 굴패화석 시용은 토양생물과 효소 활성을 증대함으로써 작물생육에 필요한 양분공급 및 가용율 향상시키는 효과가 있는 것으로 평가되었다.

미생물제 비료시용이 배추의 생육과 토양 화학성 및 미생물상에 미치는 영향 (Effects of TLB Microbial fertilizer application on Soil Chemical Properties, Microbial Flora and Growth of Chniese Cabbage (Brassica Compestris subsp. napus var. pekinensis MAKINO))

  • 윤세영;신중두
    • 한국토양비료학회지
    • /
    • 제34권1호
    • /
    • pp.8-16
    • /
    • 2001
  • 미생물제 비료시용이 배추의 생육과 토양의 화학성 변화 및 미생물상에 미치는 영향을 포장시험으로 실시하였다. 대조구에 비하여 TLB미생물제 비료를 시용함으로써 배추의 생육은 양호하였으며, 배추수량에 있어서도 유의성 있는 증수 효과를 보였다. 그러나 TLB미생물제 비료를 시용하더라도 배추생육시 요소비료의 추비량 및 퇴비 시용량을 줄일 경우에는 대조구에 비하여 수량이 다소 감소하는 경향을 보였다. 토양의 화학적 성질에 미치는 TLB 미생물제 비료 시용의 효과는 대조구에 비하여 수확기의 토양유기물 함량의 감소가 가장 큰 것으로 나타났고, 토양중 전질소 함량은 0.76~1.44% 범위로 대조구보다 오히려 미생물제 비료 시용구가 감소하는 경향을 보였다. 토양중 유효인산 함량은 시험전 토양의 559ppm에 비하여 배추의 수확기에 대조구 755ppm 그리고 미생물제 시용구 653ppm으로 대조구와 비교하여 미생물제 시용으로 인하여 다소 낮은 편이었다. 한편 배추 수확 후 배추의 화학적 성분은 전 질소 2.62~2.94%, 인산 1.48~1.55%, 칼리 3.60~4.38%범위이었으며, 각 처리간에 함량의 뚜렷한 차이는 없었다. 토양 미생물상중 전세균수는 대조구보다 미생물제 시용으로 다소 감소하였으나, 배추수확기 토양에서 Pseudomonas속이 3배 이상 높은 군락을 보였다. 그러나 방선균은 큰 차이를 보이지 않았지만, 사상균수는 수확기 토양에서 미생물제 비료 시용으로 현저히 높은 군락을 형성하였다.

  • PDF

Effects of Long-Term Fertilization on Microbial Diversity in Upland Soils Estimated by Biolog Ecoplate and DGGE

  • An, Nan-Hee;Lee, Sang-Min;Cho, Jung-Rai;Lee, Byung-Mo;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.451-456
    • /
    • 2014
  • Organic amendment practices can influence diversity and activities of soil microorganisms. There is a need to investigate this impact compared with other types of materials. This study was carried out to evaluate the long term effects of chemical and organic fertilizer on soil microbial community in upland field. During the last 11 years green manure, rice straw compost, rapeseed cake, pig mature compost, NPK, and NPK + pig mature compost were treated in upland soil. Organic fertilizer treatment found with high bacterial colony forming units (CFUs) as compared to chemical and without fertilizer treatment. There was no significant difference in the actinomycetes and fungal population. The average well color development (AWCD) value was the highest in green manure and, the lowest in without fertilizer treatment. Analyses based on the denaturing gradient gel electrophoresis (DGGE) profile showed that rice straw compost and pig mature compost had a similar banding pattern while rapeseed cake, NPK, NPK + pig mature compost and without fertilizer treatment were clustered in another cluster and clearly distinguished from green manure treatment. Bacterial diversity can be highly increased by the application of organic fertilizer while chemical fertilizer had less impact. It can be concluded that green manure had a beneficial impact on soil microbial flora, while, the use of chemical fertilizer could affect the soil bacterial communities adversely.

Physiological Responses of Tomato Plants and Soil Microbial Activity in Salt Affected Greenhouse Soil

  • Sung, Jwakyung;Lee, Suyeon;Nam, Hyunjung;Lee, Yejin;Lee, Jongsik;Almaroai, Yaser A.;Ok, Yongsik
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1065-1072
    • /
    • 2012
  • Crop productivity decreases globally as a result of salinization. However, salinity impact on greenhouse-grown crops is much higher than on field-grown crops due to the overall concentrations of nutrients in greenhouse soils. Therefore, this study was performed to determine the short-term changes in growth, photosynthesis, and metabolites of tomato plants grown in greenhouse under heavily input of fertilizers evaluated by microbial activity and chemical properties of soils. The soils (< 3, 3.01~6, 6.01~10 and > 10.01 dS $m^{-1}$) from farmer's greenhouse fields having different fertilization practices were used. Results showed that the salt-accumulated soil affected adversely the growth of tomato plants. Tomato plants were seldom to complete their growth against > 10.0 dS $m^{-1}$ level of EC. The assimilation rate of $CO_2$ from the upper fully expanded leaves of tomato plants is reduced under increasing soil EC levels at 14 days, however; it was the highest in moderate or high EC-subjected (3.0 ~ 10.0 dS $m^{-1}$) at 28 days. In our experiment, soluble sugars and starch were sensitive markers for salt stress and thus might assume the status of crops against various salt conditions. Taken together, tomato plants found to have tolerance against moderate soil EC stress. Various EC levels (< 3.0 ~ 10.0 dS $m^{-1}$) led to a slight decrease in organic matter (OM) contents in soils at 28 days. Salinity stress led to higher microbial activity in soils, followed by a decomposition of OM in soils as indicated by the changes in soil chemical properties.