• 제목/요약/키워드: Soil microbes

검색결과 216건 처리시간 0.026초

골프장 한국잔디의 Rhizoctonia solani AG2-2에 의한 Large Patch 발생 토양에서 근권 미생물과 무기영양 평가 (Soil Mineral Nutrients and Microbes Are Responsible for Large Patch Disease Caused by Rhizoctonia solani AG2-2 in Zoysiagrass Turf)

  • 장태현;류연주;이용세
    • 아시안잔디학회지
    • /
    • 제21권2호
    • /
    • pp.113-126
    • /
    • 2007
  • 골프장의 한국 잔디에서 Rhizoctonia solani AG2-2에 의해 발생되는 large patch의 근권토양과 건전 잔디의 근귄 토양 샘플을 hole cutter (diameter $10\;cm\;{\times}\;8\;cm$ deep)을 이용하여 샘플을 채취하여 무기성분과 미생물을 조사하였다. Large patch와 건전 잔디의 분산분석 결과 $NO_3$-N(P=0.05), NH4-N(P=0.1) 및 K(P=0.1) 함량에서 중요한 유의차이를 보였다. Large patch가 발생한 토양에 $NO_3$-N 함량은 9.49 mg/kg로 건전한 잔디의 토양 7.02 mg/kg 보다 높았다. 반면, $NH_4$-N의 함량은 large patch 발생한 토양이 12.02 mg/kg으로 건전한 잔디의 근권 토양 14.40 mg/kg 보다 높았다. K 함량은 large patch 토양이 건전한 잔디의 토양보다 낮았다. 근권 토양의 미생물 집락 수를 조사하여 분산 분석한 결과 Pseudomonas spp 집락 수에서 중요한 유의차이(P=0.05)를 보였다. Large patch가 발생한 토양에 미생물의 집락 수가 건전한 잔디의 토양에 비하여 낮았다. 이들 결과는 근권 토양에 과다한 $NO_3$-N, $NH_4$-N 및 K 함량과 토양미생물의 밀도는 large patch 발병과 관련 이 있을 수 있다고 사료된다.

Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees-a case study in a maple tree

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.155-162
    • /
    • 2018
  • Background: In ecosystem carbon cycle studies, distinguishing between $CO_2$ emitted by roots and by microbes remains very difficult because it is mixed before being released into the atmosphere. Currently, no method for quantifying root and microbial respiration is effective. Therefore, this study investigated the relationship between soil respiration and underground root biomass at varying distances from the tree and tested possibilities for measuring root and microbial respiration. Methods: Soil respiration was measured by the closed chamber method, in which acrylic collars were placed at regular intervals from the tree base. Measurements were made irregularly during one season, including high temperatures in summer and low temperatures in autumn; the soil's temperature and moisture content were also collected. After measurements, roots of each plot were collected, and their dry matter biomass measured to analyze relationships between root biomass and soil respiration. Results: Apart from root biomass, which affects soil's temperature and moisture, no other factors affecting soil respiration showed significant differences between measuring points. At each point, soil respiration showed clear seasonal variations and high exponential correlation with increasing soil temperatures. The root biomass decreased exponentially with increasing distance from the tree. The rate of soil respiration was also highly correlated exponentially with root biomass. Based on these results, the average rate of root respiration in the soil was estimated to be 34.4% (26.6~43.1%). Conclusions: In this study, attempts were made to differentiate the root respiration rate by analyzing the distribution of root biomass and resulting changes in soil respiration. As distance from the tree increased, root biomass and soil respiration values were shown to strongly decrease exponentially. Root biomass increased logarithmically with increases in soil respiration. In addition, soil respiration and underground root biomass were logarithmically related; the calculated root-breathing rate was around 44%. This study method is applicable for determining root and microbial respiration in forest ecosystem carbon cycle research. However, more data should be collected on the distribution of root biomass and the correlated soil respiration.

매립지 복토용 슬러지 고화물내 이산화탄소 생광물화 고정균 분석 및 생광물화능 평가 (Characterization of CO2 Biomineralization Microorganisms and Its Mineralization Capability in Solidified Sludge Cover Soil in Landfill)

  • 안창민;배영신;함종헌;천승규;김창균
    • 대한환경공학회지
    • /
    • 제35권8호
    • /
    • pp.598-606
    • /
    • 2013
  • 본 연구에서는 실제 매립장에 매립되어 있는 슬러지 고화물을 대상으로 생광물화 미생물 종분석을 위한 기초 연구를 수행 하였고, 또한 분석된 미생물을 배양하여 일반적으로 알려진 생광물화균과의 대조 실험을 통해 토착 미생물의 carbonate 생성능을 기기분석을 통해 비교 평가하였다. 시료내 미생물 종분석을 16S rDNA 시퀀스 분석을 통해 수행해본 결과, 다양한 미생물종이 관찰되었으며, 특히 생광물화 기작에 관여한다고 알려진 호기성 토양 미생물의 한종인 Bacillus megaterium과 금속을 환원시켜 미네랄염 상태로 전환시키는 Alkaliphilus metalliredigens의 근연종을 확인 하였다. 복토재에서 분리 배양한 균주를 이용하여 실험을 수행한 결과, 생광물화 균주가 주입된 실험군에서 미생물이 주입되지 않은 대조군보다 이산화탄소의 감소량이 더 컸다. 이와 연계하여 반응후 열중량분석기(TG-DTA)를 이용하여 탄산염(carbonate minerals)을 정량한 결과, 미생물이 주입된 실험군에서 대조군에 비해 약 30% 정도 더 생성된 것을 확인 하였다. 이러한 실험 결과로 비춰 볼 때 열중량분석법(TG-DTA)은 이산화탄소의 생물학적 전환에 의해 생성된 탄산염물의 정략적 분석에 적합할 것으로 판단된다. 이를 종합해 보면 복토재로 현장 매립된 슬러지 고화물은 매립장에서 표면 발산되는 이산화탄소의 자연적인 탄산염 전환 매체로서 적용이 가능할 것으로 판단된다.

유기성폐자원을 이용한 산불토양의 생태학적 복원을 위한 토양의 생물학적, 물리화학적 기초특성연구 (Basic study on the biological and physicochemical properties of burnt forest soil for the ecological restoration by organic waste)

  • 정영률;송인근;김영준
    • 유기물자원화
    • /
    • 제13권1호
    • /
    • pp.79-89
    • /
    • 2005
  • 유기성폐기물 및 토양미생물을 이용하여 산불로 훼손된 산림토양을 생태적으로 복원하기 위한 일환으로 동해안 지역에서 발생한 산불토양의 물리화학적 환경요인 및 생물학적 특성을 분석하였다. 토양 시료는 산불의 영향을 받지 않은 정상토양(US), 산불 후 자연적으로 복원된 토양(NS)과 산불 후 인위적인 복원이 시도된 토양(AS) 등, 세 지역의 표토와 심토를 이용하였다. 모든 토양 시료는 사질토가 우세한 pH5.34~5.78의 산성 토양이었으며, 함수량은 정상토양에서 높게 나타났고 자연복원지와 인위복원지에서는 표토의 함수량이 심토보다 낮았다. 총 유기물량과 수용성 당량은 정상토양에서 특히 높았으며, 전체적으로 심토보다 표토에서 높게 나타났다. 토양 종속영양세균의 군집크기는 정상토양의 표토 (UST)와 자연복원지 심토(NSS)에서 크게 나타났으며, 탈수소효소, 섬유소 분해효소, 산성 인산 분해효소의 활성도는 정상토양에서 높게 나타났다. 미생물 작용의 1차지표가 되는 탈수소효소의 활성도는 함수량과 0.902 (P<0.05)의 높은 상관관계를 보였다.

  • PDF

Effects of Cover Plants on Soil Microbial Community in a Organic Pear Orchard

  • Oh, Young-Ju;Sohn, Soo-In;Song, Yang-Ik;Kang, Seok-Boem;Choi, Jin-Ho
    • 한국토양비료학회지
    • /
    • 제47권1호
    • /
    • pp.28-35
    • /
    • 2014
  • Due to recent interest of the consumers on safe farm products and the government's political support for eco-friendly agriculture, organic fruit production has been growing continuously. This research was conducted in order to study the effect of cover plants on soil microbial community on cover plants and establish an organic fruit cultivation method through choosing optimal cover plant. As a result of investigating soil microbial population density, the bacterial density in soil showed an increasing trend in June compared to April, and there was a decreasing trend in bacterial density of the soil in August compared to June. The density of actinomycetes in soil increased around 1.6 times in June compared to April when the soil was covered with hairy vetch. The increase of filamentous fungus in crimson clover group was 6.1 times higher in June compared to April and in hairy vetch group, the increase was 4.9 times higher in June compared to April. As a result of analyzing DNA extracted from the soil categorized by different types of cover plants using DGGE method, soil collected from April had higher number of bands detected from different locations according to different types of cover plants. Diversity of the bands from the soil collected from August showed higher range of reduction. As a result of analyzing soil microbial community by different period and the types of cover plants using Pyrosequencing method, microbes were detected in the order of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Firmicutes. Distribution rate of Firmicutes increased in the soil collected in August compared to June and this was shown in all types of cover plants by twice the amount.

Microbial Community Structure in Hexadecane- and Naphthalene-Enriched Gas Station Soil

  • Baek, Kyung-Hwa;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.651-657
    • /
    • 2009
  • Shifts in the activity and diversity of microbes involved in aliphatic and aromatic hydrocarbon degradation in contaminated soil were investigated. Subsurface soil was collected from a gas station that had been abandoned since 1995 owing to ground subsidence. The total petroleum hydrocarbon content of the sample was approximately 2,100 mg/kg, and that of the soil below a gas pump was over 23,000 mg/kg. Enrichment cultures were grown in mineral medium that contained hexadecane (H) or naphthalene (N) at a concentration of 200 mg/l. In the Henrichment culture, a real-time PCR assay revealed that the 16S rRNA gene copy number increased from $1.2{\times}10^5$to $8.6{\times}10^6$with no lag phase, representing an approximately 70-fold increase. In the N-enrichment culture, the 16S rRNA copy number increased about 13-fold after 48 h, from $6.3{\times}10^4$to $8.3{\times}10^5$. Microbial communities in the enrichment cultures were studied by denaturing gradient gel electrophoresis and by analysis of 16S rRNA gene libraries. Before the addition of hydrocarbons, the gas station soil contained primarily Alpha- and Gammaproteobacteria. During growth in the H-enrichment culture, the contribution of Bacteriodetes to the microbial community increased significantly. On the other hand, during N-enrichment, the Betaproteobacteria population increased conspicuously. These results suggest that specific phylotypes of bacteria were associated with the degradation of each hydrocarbon.

Optimization of nutrients requirements for bioremediation of spent-engine oil contaminated soils

  • Ogbeh, Gabriel O.;Tsokar, Titus O.;Salifu, Emmanuel
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.484-494
    • /
    • 2019
  • This paper presents a preliminary investigation of the optimum nutrients combination required for bioremediation of spent-engine oil contaminated soil using Box-Behnken-Design. Three levels of cow-manure, poultry-manure and inorganic nitrogen-phosphorus-potassium (NPK) fertilizer were used as independent biostimulants variables; while reduction in total petroleum hydrocarbon (TPH) and total soil porosity (TSP) response as dependent variables were monitored under 6-week incubation. Ex-situ data generated in assessing the degree of biodegradation in the soil were used to develop second-order quadratic regression models for both TPH and TSP. The two models were found to be highly significant and good predictors of the response fate of TPH-removal and TSP-improvement, as indicated by their coefficients of determination: $R^2=0.9982$ and $R^2=1.000$ at $p{\leq}0.05$, respectively. Validation of the models showed that there was no significant difference between the predicted and observed values of TPH-removal and TSP-improvement. Using numerical technique, the optimum values of the biostimulants required to achieve a predicted maximum TPH-removal and TSP-improvement of 67.20 and 53.42%-dry-weight per kg of the contaminated soil were as follows: cow-manure - 125.0 g, poultry-manure - 100.0 g and NPK-fertilizer - 10.5 g. The observed values at this optimum point were 66.92 and 52.65%-dry-weight as TPH-removal and TSP-improvement, respectively.

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • 한국환경농학회지
    • /
    • 제40권3호
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

빙초산을 탄소원으로 한 글루타민산 생성에 관한 연구 (On the Production of L-Glautamic Acid from Acetate by Some Microbes)

  • 유영진;박계인;김기주;한덕봉;김요성
    • 미생물학회지
    • /
    • 제11권2호
    • /
    • pp.59-62
    • /
    • 1973
  • Bacterium strain, K-173-10, which was isolated from waste soil of Korean brewing factories, could grow on acetate as the sole carbone source and accumulate a considerable amount of L-glutamic acid (24g/l) in the liguid culture medium. This strain was named by Brevibacterium ammoniagenes sp. by the standard method of taxonomy procedures given in the Manual of Microbiogical Methods.

  • PDF

Survival and Performance of Two Cellulose-Degrading Microbial Systems Inoculated into Wheat Straw-Amended Soil

  • Li, Peipei;Zhang, Dongdong;Wang, Xiaojuan;Wang, Xiaofen;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.126-132
    • /
    • 2012
  • A cellulose-degrading composite microbial system containing a mixture of microbes was previously shown to demonstrate a high straw-degrading capacity. To estimate its potential utilization as an inoculant to accelerate straw biodegradation after returning straw to the field, two cellulose-degrading composite microbial systems named ADS3 and WSD5 were inoculated into wheat straw-amended soil in the laboratory. The microbial survival of the inoculant was confirmed by a denaturing gradient gel electrophoresis (DGGE) analysis, whereas the enhancement of straw degradation in soil was assessed by measuring the mineralization of the soil organic matter and the soil cellulase activity. The results indicated that most of the DGGE bands from ADS3 were detected after inoculation into straw-amended autoclaved soil, yet only certain bands from ADS3 and WSD5 were detected after inoculation into straw-amended non-autoclaved soil during five weeks of incubation; some bands were detected during the first two weeks after inoculation, and then disappeared in later stages. Organic matter mineralization was significantly higher in the soil inoculants ADS3 and WSD5 than in the uninoculated controls during the first week, yet the enhanced degradation did not persist during the subsequent incubation. Similar to the increase in soil organic matter, the cellulase activity also increased during the first week in the ADS3 and WSD5 treatments, yet decreased during the remainder of the incubation period. Thus, it was concluded that, although the survival and performance of the two inoculants did not persist in the soil, a significant enhancement of degradation was present during the early stage of incubation.