• Title/Summary/Keyword: Soil management

Search Result 2,739, Processing Time 0.03 seconds

Establishing Policies towards Integrated Management of Soil Pollution and Damage (토양오염 및 훼손 통합관리를 위한 정책방향 설정)

  • Kim, Jong Sung;Park, Yoon-Sik;Lee, Gi-Ha;Hwang, Sang-Il;Yang, Jae E.
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.85-93
    • /
    • 2017
  • In this study, the concepts of soil degradation, soil pollution and soil damage are defined, and the domestic and foreign administrative systems related to soil pollution and soil damage management are analyzed. In case of foreign countries, laws and regulations on the soil conservation and soil damage management were analyzed. In case of Korea, the present state of the legal system governing soil pollution and damage management was analyzed in each aspect. Through this study, suggestions for amendments of relevant laws were proposed by establishing policy direction for integrated management of soil pollution and soil damage. The results of this study will provide a basis for integrated management of soil pollution and damage, and it can be utilized in establishing integrated management strategy of long term soil conservation and sustaninable soil development at national level.

Sustainable Soil and Groundwater Management: Concepts, Current Research Trends, and Future Perspectives (지속 가능 토양 지하수 관리: 개념, 연구동향, 미래전망)

  • Eunhee Lee;Kitae Baek;Eun Hea Jho;Yongju, Choi
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.spc
    • /
    • pp.1-17
    • /
    • 2023
  • Sustainability is commonly recognized as one of the new paradigms or norms that will reign the new era after the modern age of revolutionary economic development. This global trend calls for the adoption of the sustainability concept to soil and groundwater management. In fact, there are several such ongoing movements in practicing soil and groundwater management. Through literature review, this paper discusses the concept, practices, and future research needs of sustainable soil and groundwater management. We first discuss the definition of sustainable soil and groundwater management and possible methodologies to gauge or improve the sustainability of soil and groundwater management. Then, we introduce the research topics, exemplary practices, and propose solutions to elaborate sustainability in three representative subfields including soil and groundwater remediation, groundwater management, and soil management. We conclude with suggestions on the future research directions for successful adoption of sustainability concept to soil and groundwater management in the Republic of Korea.

Relationship between Soil Management Methods and Soil Chemical Properties in Protected Cultivation

  • Kang, Yun-Im;Lee, In-Bog;Par), Jin-Myeon;Kang, Yong-Gu;Kim, Seung-Heui;Ko, Hyeon-Seok;Kwon, Joon-Kook
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • Various cultural practices have been promoted as management options for enhancing soil quality and health. The use of soil management methods can cause changes in fertility by affecting soil chemical properties. This study aimed to evaluate interactions between soil chemical properties and soil management methods in protected cultivation, and to classify soil management methods that similarly affect soil chemical properties. Water-logging and irrigation reduced soil pH and available $P_2O_5$ content. Application of animal manures has a positive effect on levels of organic matter, Av.$P_2O_5$, K, Zn, and Cu. The electrical conductivites tened to be low in the application of organic amendments, including rice and wood residues. Deeper plowing caused a reduction in Ca content. Practicing soil nutrient-considering fertilization and fertigation did not exert an influence on nutrient element contents. In a cluster analysis of the soil management methods according to major nutrients, low similarities were found with deeper plowing and crop rotation with rice in comparison with other practices. In a cluster analysis by minor nutrient characteristics, crop rotation and application of animal manures and rice residues were linked at a high Ward's distance, while other practices were found to be relatively low distinct. Each soil management method has a similar or different effect on soil chemical properties. These results suggest the necessity of establishing limits and standards according to the effects of soil management methods on soil chemical properties for economic soil practices.

Mineral N, Macro Elements Uptake and Physiological Parameters in Tomato Plants Affected by Different Nitrate Levels

  • Sung, Jwa-Kyung;Lee, Su-Youn;Kang, Seong-Soo;Lee, Ye-Jin;Kim, Ro-Gyoung;Lee, Ju-Young;Jang, Byoung-Choon;Ha, Sang-Keun;Lee, Jong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.551-558
    • /
    • 2011
  • The aim of this study was to know whether leaf nitrate can be a substitute of total leaf N to justify plant N status and how nitrate influences macro elements uptake and physiological parameters of tomato plants under different nitrogen levels. Leaf nitrate content decreased in low N, while showed similar value with the control in high N, ranging from 55 to $70mg\;g^{-1}$. Differences in nitrate supply led to nitrate-dependent increases in macro elements, particularly cations, while gradual decrease in P. Physiological parameters, photosynthesis rates and antioxidants, greatly responded in N deficient conditions rather than high N, which didn't show any significant differences compared the control. Considering nitrogen forms and physiological parameters, total-N in tomato plants represented positive relation with growth (shoot dry weight), nitrate and $CO_2$ assimilation, whereas negative relation with lipid peroxidation.

Characteristics of Anthropogenic Soil Formed from Paddy near the River

  • Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hyun, Byung-Keun;Kim, Keun-Tae;Lee, Chang-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2016
  • Anthropogenic soil in cropland is formed in the process of subsoil reversal and the refill of soil into cropland. However, there was little information on the chemical properties within soil profiles in anthropogenic soil under rice paddy near the river. In this study, we investigated the chemical properties within soil profiles in the anthropogenic soil located at 4 sites in Gumi, Kimhae, Chungju, and Euiseong to compare with the natural paddy soil near the river. Among particle sizes, the sand content decreased under soil profiles but the silt and clay contents increased compared to the natural paddy soil in soil profiles. Organic matter content in topsoil of anthropogenic soil was lower than in that of natural soil, which was shown the contrary tendency within soil profiles. Also, the soil pH, available $P_2O_5$, and exchangeable cations were higher in anthropogenic soil compared to natural paddy soil at topsoil, which was maintained these tendency into soil depth. Nutrients may be equally distributed in anthropogenic soil during the process of refill in paddy soil near the river. This results indicated that anthropogenic soil would contribute to carbon sequestration, the mitigation of compaction, and reduction of fertilizer application in paddy soil. Therefore, characteristics of anthropogenic soil can be used for the soil management in cropland.

Management Strategies to Improve Recycling of Remediated Soil with Sustained Soil Health (토양건강성을 고려한 정화토 재활용을 위한 제도 개선)

  • Kim Mintchul;Park Yongha;Chun Mihee;Jung Myungchae;Kim Jeongwook
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.59-67
    • /
    • 2023
  • This review examined the current administrative policies and guidelines for management of reclaimed soils after remediation processes and proposed practical strategies to improve the potential value of the remediated soil as a resource. Three management practices are proposed to facilitate more efficient recycling of remediated soil; obligatory use, quality certification, and tracking of the remediated soils. If properly implemented in utilization of remediated soil, these strategies could contribute to enhancing public safety by assuring soil quality. Such administrative tools, for both suppliers and demanders, are expected to mitigate potential risks associated with the transactions of remediated soil. To enhance the quality assurance process, a soil quality certification combined with the soil health assessment index was proposed. The systematic integration of the suggested practices with soil health assessment can allow to produce optimal results, encompassing affordability, efficiency, and accessibility, which helps establishing more robust 'Remediated Soil Recycling Management System (RSRMS)'. Subsequent researches should be conducted to develop more effective policies that incorporate soil health assessment tools. The proposed management practices for remediated soil, coupled with soil health assessment, can be a pioneering effort to achieve such goals. By fostering an environmentally friendly policies, the sustainable utilization of remediated soil can be attained. Overall, the proposed strategies can provide a sound framework for responsible and sustainable soil management practices.

Classification of Soil Desalination Areas Using High Resolution Satellite Imagery in Saemangeum Reclaimed Land

  • Lee, Kyung-Do;Baek, Shin-Chul;Hong, Suk-Young;Kim, Yi-Hyun;Na, Sang-Il;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.426-433
    • /
    • 2013
  • This study was aimed to classify soil desalination area for cultivation using NDVI (Normalized difference vegetation index) of high-resolution satellite image because the soil salinity affects the change of plant community in reclaimed lands. We measured the soil salinity and NDVI at 28 sites in the Saemangeum reclaimed land in June 2013. In halophyte and non-vegetation sites, no relation was found between NDVI and soil salinity. In glycophyte sites, however, we found that the soil salinity was below 0.1% and NDVI ranged from 0.11 to 0.57 which was greater than the other sites. So, we could distinguish the glycophyte sites from the halophyte sites and non-vegetation, and classify the area that soil salinty was below 0.1%. This technique could save the time and labor to measure the soil salinity in large area for agricultural utilization.

Assessment of Subsoil Compaction by Soil Texture on Field Scale

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.628-633
    • /
    • 2015
  • It is necessary to assess soil physical properties and crop growth treated by compaction to establish the soil management standard. This study evaluated the bulk density, strength and crop growth after subsoil compaction for sandy loam and loam on the field in Suwon, Korea. The treatments were compaction and deep tillage. Sandy loam and loam were classified to coarse soil and fine soil, respectively, depending on clay contents. In coarse soil, bulk density of compacted plot was 8~17% greater than control and deep tilled plot. The root growth was worse in compacted plot compared with control. In fine soil, plow pan was not observed in deep tilled plot with 5~19% smaller bulk density than compacted plot and control. Deep tillage improved the crop growth. The soil physical properties by compaction were dependent on clay content and crop growth limit depended on the traffic driving.

Soil Chemistry (토양화학)

  • Lee, Sang-Eun;Hong, Chong-Woon;Kim, Yoo-Hak;Park, Chan-Won;Seo, Myung-Chul;Ok, Yong-Sik;Zhang, Yong-Seon;Jung, Won-Kyo;Jeong, Chang-Yoon;Hyun, Seung-Hun;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42
    • /
    • pp.53-101
    • /
    • 2009

Comparison of Organic Carbon Composition in Profile by Using Solid 13C CPNMR Spectroscopy in Volcanic Ash Soil

  • Sonn, Yeon Kyu;Kang, Seong Soo;Ha, Sang Keun;Kim, Yoo Hak;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.391-398
    • /
    • 2013
  • Soil organic carbon (SOC) has the potential to promote the soil quality for sustainability and mitigation of global warming. There is little information on organic carbon composition despite of having resistance of carbon degradation in soil. In this study, to understand the effect of volcanic ash on organic carbon composition and quantity in soil, we investigated characteristics of volcanic soil and compared organic carbon composition of soil and humic extract by using $^{13}C$-CPMAS-NMR spectra under soil profiles of Namweon series in Jeju. SOC contents of inner soil profiles were 134.8, 101.3, and 27.4 g C $kg^{-1}$ at the layer of depth 10-20, 70-80 and 90-100 cm, respectively. These layers were significantly different to soil pH, oxalate Al contents, and soil moisture contents. Alkyl C/O-alkyl C ratio in soil was higher than that of humic extracts, which was decreased below soil depth. Aromaticity of soil and humic extract was ranged from 29-38 and 24-32%, which was highest at the humic extract of 70-80 cm in soil depth. These results indicate that the changes of SOC in volcanic ash soil resulted from alteration of organic composition by pyrolysis and stability of organic carbon by allophane in volcanic ash soil.