• Title/Summary/Keyword: Soil layer

Search Result 1,792, Processing Time 0.024 seconds

Behavior of Synthetic Pyrethroid Insecticide Bifenthrin in Soil Environment II) Identification of Degradation Product and Leaching of Bifenthrin in soil (합성 Pyrethroid 계 살충제인 Bifenthrin의 토양환경중 동태 제2보. Bifenthrin의 토양중 분해산물의 동정 및 용탈)

  • Kim, Jang-Eok;Choi, Tae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • This study was conducted to know degradation products of the synthetic pyrethroid insecticide bifenthrin under soil, aqueous solution and UV-light irradation, and know its movement by leaching in soil. The major degradation product of bifenthrin was identified with 2-methylbiphenyl -3-y1 methanol by HPLC, UV, Mass and NMR under soil, aqueous solution and UV-light irradiation, The main degradation route was hydrolysis of the ester linkage. On exposure to UV-light, bifenthrin was decomposed almost completely in concentrations of 10 and 100 ppm in 24 hr but decomposed about 80% in 1,000 ppm. Bifenthrin was immobile in soil column system and on soil thin-layer chromatography system. Mostly bifenthrin remained in the 0-2.0㎝ layer of soil column and soil TLC.

  • PDF

Effect of Shading Degree and Rooting Media on Growth of Cuttings in Caragana sinica (Buc'hoz) Rehder and Sedum middendorffianum Maxim (차광 정도와 삽목용토가 골담초와 애기기린초의 삽수 생육에 미치는 영향)

  • Kim, Hyun Jin;Kim, Yoon Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.4
    • /
    • pp.271-276
    • /
    • 2015
  • This study was conducted to investigate the effect of shading degree and rooting media on the growth of Caragana sinica and Sedum middendorffianum after cutting. In C. sinica, the highest rooting rate was obtained in cuttings planted in horticultural soil (Sunshine Mix #1) and peat moss mixture (peat moss : perlite = 1 : 1, v/v) under one layer of 35% shading and in cuttings planted in kanumatsuchi soil mixture (kanumatsuchi soil : decomposition of granite = 1 : 1, v/v) under non-shading. Whereas, regardless of shading degree, most cuttings of S. middendorffianum rooted in both horticultural soil and peat moss mixture. Cuttings of C. sinica showed the highest root length, 10.4cm in kanumatsuchi soil mixture under one layer of 35% shading but the highest fresh and dry weight of roots in kanumatsuchi soil mixture under non-shading. In S. middendorffianum, the highest root length, fresh and dry weight of root were obtained in cuttings planted in horticultural soil under non-shading. With these results, we recommended that cuttings of C. sinica should be propagated in kanumatsuchi soil mixture under non-shading and cuttings of S. middendorffianum in horticultural soil under non-shading.

Field study of the process of densification of loose and liquefiable coastal soils using gravel impact compaction piers (GICPs)

  • Niroumand, Bahman;Niroumand, Hamed
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.479-487
    • /
    • 2022
  • This study evaluates the performance of gravel impact compaction piers system (GICPs) in strengthening retrofitting a very loose silty sand layer with a very high liquefaction risk with a thickness of 3.5 meters in a multilayer coastal soil located in Bushehr, Iran. The liquefiable sandy soil layer was located on clay layers with moderate to very stiff relative consistency. Implementation of gravel impact compaction piers is a new generation of aggregate piers. After technical and economic evaluation of the site plan, out of 3 experimental distances of 1.8, 2 and 2.2 meters between compaction piers, the distance of 2.2 meters was selected as a winning option and the northern ring of the site was implemented with 1250 gravel impact compaction piers. Based on the results of the standard penetration test in the matrix soil around the piers showed that the amount of (N1)60 in compacted soils was in the range of 20-27 and on average 14 times the amount of (1-3) in the initial soil. Also, the relative density of the initial soil was increased from 25% to 63% after soil improvement. Also the safety factor of the improved soil is 1.5-1.7 times the minimum required according to the two risk levels in the design.

Seasonal Abundance and Vertical Distribution of Soil Microarthropods at the Piagol Mt Chiri (지리산 피아골 토양 미소절지동물상의 계절적 변화 및 수직분포)

  • Hong, Yong;Tae-Heung Kim;Young-Chol Oh
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 1996
  • Density fluctuations of soil microarthropods at the Piagol, Mt. Chiri was assessed on the basis of 113, 096 individuals collected from March 1993 to February 1994. Of 6 classes, and 18 orders, the Arachnida and Insecta were the most numerous members with abundance of 51.4% and 46.3%, respectively. The mean density of the Acari was $13, 310/m^2$ of microarthropods. The Acari were abundant in autumn and less found in winter and the density fluctuation of the Collembola followed a similar trend. The vertical distribution of the mesofauna revealed from the soil samples taken from the surface to 5 and from 5 to 10 cm in depths was as follows. In 5~10 cm layer. Collembola was numerous with abundance of 54.7%, followed by 40.1% fo Acari and the soil microarthropods reached the highest density peak in spring, while the lowest in winter. Populations concentrated in the 0~5 cm layer as much as 62.2% throughtout the season and 82.4% throughtout the altitudes. The Acari / Collembola (A/C) ratio in the 0~5 cm layer was higher than that in the 5~10 cm.

  • PDF

Investigating the dynamic response of deep soil mixing and gravel drain columns in the liquefiable layer with different thickness

  • Gholi Asadzadeh Khoshemehr;Hadi Bahadori
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.665-681
    • /
    • 2023
  • Liquefaction is one of the most devastating geotechnical phenomena that severely damage vital structures and lifelines. Before constructing structures on problematic ground, it is necessary to improve the site and solve the geotechnical problem. Among ground improvement methods dealing with liquefaction, gravel drain (GD) columns and deep soil mixing (DSM) columns are popular. In this study, the results of a series of seismic experiments in a 1g environment on a structure located over liquefiable ground with different thicknesses reinforced with GD and DSM techniques were presented. The dynamic response of the reinforced ground system was investigated based on the parameters of subsidence rate, excess pore water pressure ratio, and maximum acceleration. The time history of the input acceleration was applied harmonically with an acceleration range of 0.2g and at frequencies of 1, 2, and 3 Hz. The results show that the thickness of the liquefiable layer and the frequency of the input motion have a significant impact on the effectiveness of the improvement method and all responses. Among the two techniques used, DSM in thick liquefied layers was much more efficient than GD in controlling the subsidence and rupture of the soil under the foundation. Maximum settlement values, settlement rate, and foundation rotation in the thicker liquefied layer at the 1-Hz input frequency were higher than at other frequencies. At low thicknesses, the dynamic behavior of the GD was closer to that of the DSM.

Theoretical and Experimental Investigation on Filter Criteria of Geotextile Considering Flow Conditions of Water (흐름형태별 Geoltextile의 필터기준에 관한 이론 및 실험적 고찰)

  • Cho, Sam Deok;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.163-172
    • /
    • 1990
  • The filter criteria of geotextiles to prevent excessive loss of fine particles in cohesion-less soils are largely depend on the flow conditions of water in soil/geotextile systems. In the soil/geotextile system under uni-directional flow conditions, it is adequate to retain only the coarse soil fraction because a 'self-induced' soil filter layer may form in cohesionless soil adjacent to the geotextile. In alternating flow conditions, however, a complete soil filter layer within the soil will not form and thus the geotextile pores must be small enough to retain finer particles of the soil to be protected. Based on these concepts, theoretical filtration criteria of geotextiles are developed considering the flow conditions of water. To test the validity of these criteria, laboratory testing was carried out. This indicated that large losses of fine particles would result, especially at high hydraulic gradients, short periods and low vertical loads. The revised filtration criteria are proposed evaluating effect of various design factors.

  • PDF

Infiltration and Water Redistribution in Sandy Soil: Analysis Using Deep Learning-Based Soil Moisture Prediction (딥러닝 기반 함수비 예측을 이용한 사질토 지반 침투 및 수분 재분포 분석)

  • Eun Soo Jeong;Tae Ho Bong;Jung Il Seo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.490-501
    • /
    • 2023
  • Laboratory column tests were conducted to analyze infiltration and water redistribution processes on the basis of rainfall. To efficiently measure moisture content within soil layers, this research developed a predictive model grounded in a convolutional neural network (CNN), a deep learning technique. The digital images obtained during the column tests were incorporated into the established CNN. The moisture content of each soil layer over time was effectively measured. The measured values were also in relatively good agreement with the moisture content determined using the moisture sensors installed for each soil layer. The use of CNN enabled a comprehensive understanding of continuous moisture distribution within the soil layers, as well as the infiltration process according to soil texture and initial moisture content conditions.

Effects of reinforcement on two-dimensional soil arching development under localized surface loading

  • Geye Li;Chao Xu;Panpan Shen;Jie Han;Xingya Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.341-358
    • /
    • 2024
  • This paper reports several plane-strain trapdoor tests conducted to investigate the effects of reinforcement on soil arching development under localized surface loading with a loading plate width three times the trapdoor width. An analogical soil composed of aluminum rods with three different diameters was used as the backfill and Kraft paper with two different stiffness values was used as the reinforcement material. Four reinforcement arrangements were investigated: (1) no reinforcement, (2) one low stiffness reinforcement R1, (3) one high stiffness reinforcement R2, and (4) two low stiffness reinforcements R1 with a backfill layer in between. The stiffness of R2 was approximately twice that of R1; therefore, two R1 had approximately the same total stiffness as one R2. Test results indicate that the use of reinforcement minimized soil arching degradation under localized surface loading. Soil arching with reinforcement degraded more at unloading stages as compared to that at loading stages. The use of stiffer reinforcement had the advantages of more effectively minimizing soil arching degradation. As compared to one high stiffness reinforcement layer, two low stiffness reinforcement layers with a backfill layer of certain thickness in between promoted soil arching under localized surface loading. Due to different states of soil arching development with and without reinforcement, an analytical multi-stage soil arching model available in the literature was selected in this study to calculate the average vertical pressures acting on the trapdoor or on the deflected reinforcement section under both the backfill self-weight and localized surface loading.

Organic Carbon Distribution of the Pinus densiflora Forest on Songgye Valley at Mt. Worak National Park

  • Jeon, In-Yeong;Shin, Chang-Hwan;Kim, Gwang-Hoon;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.17-21
    • /
    • 2007
  • The organic carbon (OC) distribution of Pinus densiflora forest in Songgye valley at Mt. Worak National Park were studied as a part of the National Long-Term Ecological Research in Korea. In order to investigate the OC distribution, OC in plant biomass, litterfall, litter layer on forest floor, and soil were estimated. The density of P. densiflora forest was 1,300 trees/ha, average DBH was $15.2{\pm}6.17\;cm$ and average tree height was $10.7{\pm}2.56\;m$. The shrub layer was dominated by shrubby Quercus variabilis, Fraxinus sieboldiana and lndigofera kirilowii with low frequency, and herb layer was dominated by Pteridium aquilinum and Miscanthus sinensis. Total amount of OC stored in this pine forest was 142.78 ton C/ha. Organic carbon stored in soil and plant biomass accounted for 59.2% and 37.8%, respectively. Amount of OC distributed in trees, shrubs, herbs and litter layer in this pine forest was 51.79, 2.03, 0.12 and 4.29 ton C/ha, respectively. Amount of OC returned to forest floor via litterfall was $1.50\;ton\;C\;ha^{-1}\;yr^{-1}$. Soil organic carbon (SOC) decreased along the soil depth. Total amount of SOC within 50cm soil depth was $84.55\;ton\;C\;ha^{-1}\;50\;cm-depth^{-1}$.

Environmental Characteristics of Habitats of Iris odaesanensis Y.N.Lee (노랑무늬붓꽃(Iris odaesanensis Y.N.Lee) 자생지의 환경특성)

  • Cheon, Kyeong-Sik;Han, Jun-Soo;Seo, Won-Bok;Kim, Kyung-Ah;Yoo, Ki-Oug
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1337-1353
    • /
    • 2010
  • This study intended to investigate environmental factors including soil and vegetation in order to understand the environmental and ecological characteristics of 12 different habitats of Iris odaesanensis. These habitats, according to investigations, are mostly located at elevation of 280 m to 1,555 m with angles of inclination ranging from 2 degree to 30 degrees. A total of 273 vascular plants are identified in 23 quadrates of 12 habitats. Dominant species of woody plants in 12 habitats are represented as Quercus mongolica in the tree layer (T1) and the subtree (T2) layer, and Lespedeza maximowiczii, Lindera obtusiloba, Rhododendron schlippenbachii in the shrub (S) layer. The importance value of Iris odaesanensis is 9.65%, as regards the herbaceous layer, and 6 highly ranked species such as Carex siderosticta (3.92%), Meehania urticifolia (2.67%), Spodiopogon cotulifer (2.58%), Aconitum pseudolaeve (2.51%), Carex bostrychostigma (2.28%) and Disporum smilacinum (2.09%) are considered to be an affinity with Iris odaesanensis in their habitats. The degree of their average species diversity is 1.32, and that of dominance and evenness are 0.08 and 0.89, respectively. The type of soil is sandy loam and loam, and the average field capacity of soil is 28.31%. Their average organic matter is 16.71%, soil pH 5.29, and available phosphorus is 9.29%. Correlation coefficients analysis based on environmental factors, vegetation and soil analysis shows that the coverage of Iris odaesanensis is correlated with pH and dominance, and species richness is positive related with species diversity.