• 제목/요약/키워드: Soil input data

검색결과 310건 처리시간 0.024초

효과적인 토양유실 방지대책 수립을 위한 유사평가툴 (Enhanced Sediment Assessment Tool for Effective Erosion Control)

  • 임경재;;최예환;최중대;김기성;신용철;허성구;류창원
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.632-636
    • /
    • 2005
  • Accelerated soil erosion is a worldwide problem because of its economic and environmental impacts. To effectively estimate soil erosion and to establish soil erosion management plans, many computer models have been developed and used. The Revised Universal Soil Loss Equation (RUSLE) has been used in many countries, and input parameter data for RUSLE have been well established over the years. However, the RUSLE cannot be used to estimate the sediment yield for a watershed. Thus, the GIS-based Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to estimate soil loss and sediment yield for any location within a watershed using the RUSLE and a spatially distributed sediment delivery ratio. SATEEC was enhanced in this study by developing new modules to:1) simulate the effects of sediment retention basins on the receiving water bodies, 2) prepare input parameters for the Web-based sediment decision support system using a GIS interface. This easy-to-operate SATEEC system can be used to identify areas vulnerable to soil loss and to develop efficient soil erosion management plans.

  • PDF

작목별 비료투입에 따른 경제적 효과 추정 (The Economic Effects of Chemical Fertilizer in Big Data)

  • 이상호;송경환
    • 한국유기농업학회지
    • /
    • 제26권4호
    • /
    • pp.619-628
    • /
    • 2018
  • This study analyze the economic effect of chemical fertilizer. We used the input and output data, and the analysis variables include production output nitrogen, phosphoric acid, potassium, seeds, and labor. The main results are as follows. First, for spring potatoes, potassium increases to a certain level of output, but over a certain stage, the output decreases as the input increases. Optimal use of potassium in the calculation of spring potatoes can achieve the effect of reducing input costs and increasing output simultaneously. Second, radish In autumn, nitrogen increases to a certain level, but over a certain stage it represents a reverse U-shaped relationship in which output decreases as input increases. This means that reducing the amount of fertilizer input increases the output. This means that soil-related agricultural big data can contribute to the management of nutrients and greenhouse gas reduction in agricultural land.

고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정 (Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data)

  • 신용훈;최진용;이승재;이성학
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

지리정보시스템과 토양수분모형을 이용한 농업가뭄분석 (Agricultural Drought Analysis using Soil Water Balance Model and Geographic Information System)

  • 배승종
    • 한국농공학회지
    • /
    • 제41권6호
    • /
    • pp.33-43
    • /
    • 1999
  • Drought is a serious diaster in agriculutre, especially to upland crops. Hence, the Agricultural Drought Analysis Model (ADAM) that is integratable with GIS was applied to analyae agriculture drought in upland. ADAM is composed of two sub-models , one is a Soil Water Balance Model (SWBM) and the other is a Drougth Analysis Model (DAM) that is based on the Runs theory. The ADAM needs weather data, rainfall data and soil physical characteristics data as input and calculates daily soil moisture contents. GIS was integrated to the ADAM for the calculation of regional soil moisture using digitized landuse map, detaile dsoil map, thiessen network and district boundary . For the agriculutral drought analysis, the ADAM adapt the Runs theory for analyzing drought duration, severity and magnitude . Log-Pearson Type-III probability distribution function and Kolmogorov-Smirnov test were used to test the fitness of good of the model. The integration of ADAM with GIS was successfully implemented and would be operated effectively for the regional drought analysis.

  • PDF

밭 토양에서의 유효강우량 산정을 위한 전산모델 개발에 관한 연구 (A Study on Development of Computer model for Evaluating the Effective Rainfall on Upland Soil)

  • 고덕구;정하우
    • 한국농공학회지
    • /
    • 제24권1호
    • /
    • pp.63-72
    • /
    • 1982
  • To maintain an optimum condition for the plant growth on upland soil, the irrigation planning after the natural rainfall should be given enormous considerations on the rainfall effectiveness. This study has been intended to develop the computer model for estimating the effec- tiveness of the rainfall. The computer model should also estimated the infiltration due to the rainfall and the soil moisture deficiency at the root zone of the plant. For this purpose, the experiments of infiltration using rainfall simulator and the observations of the change of soil moisture content before and after rainfall were carried out. Needed input data for the developed model include final infiltration capacity and field capacity of the soil, porosity of the top soil, root depth of the plant, rainfall intensity and duration, and the Horton's decay coefficient. Among the needed input data for the developed model, final infiltration capacity and Horton's decay coefficient were determined by the experiments of infiltration. And from the result of the experiments, it is found that there is a great correlation between initial infiltration capacity and initial moisture content. And it is also found that the infiltration due to rainfall can be estimated with the Horton's equation. The developed model was tested by the experimental data with two rainfall intensities. Tests were conducted on the different root depths at each rainfall. Observed and estimated effective rainfalls were found to have great correlation. The result of the experiments showed that the effectiveness of the rainfall were 100%, so the comparisons were conducted by the comsumption rates of infiltration at each depth. The developed model can be also used for estimating the deficiency of rainfall, if the rainfall is not sufficient to the needed soil moisture. But, test was not carried out.

  • PDF

방사성폐기물 처분시설에서 생태계 모델의 입력데이터 선정에 대한 고찰 (Considerations on Screening for the Input Data of the Biosphere Model in the Radioactive Waste Disposal Facility)

  • 정미선;박동국;김수진;정강일
    • 방사선산업학회지
    • /
    • 제17권2호
    • /
    • pp.209-217
    • /
    • 2023
  • The biosphere has important function in the safety assessment of a radioactive waste disposal facility. A biosphere model in the safety assessment needs various input data that contain significantly inherent uncertainties. This paper reviews the effects of the input data on the radiological impact assessment from main radionuclides such as 14C and 99Tc in the biosphere model. In addition, it is confirmed that the safety criteria is met, when the conservative input data for the intake rate, soil to plant concentration ratio, and distribution coefficients of the radionuclides are applied and probabilistic analysis are conducted in the biosphere model. Nevertheless, it is required to generate site-specific input data for the confidence building and reduce excessive conservatism in the biosphere model.

역해석기법을 통한 발파하중 산정 및 수치해석을 이용한 구조물의 진동영향평가 (A Calculation of Blasting Load using Input Identification Method & Evaluation of Structure's Vibration in Numerical Analysis)

  • 최준성;이진무;조만섭
    • 터널과지하공간
    • /
    • 제16권3호
    • /
    • pp.232-240
    • /
    • 2006
  • 본 연구는 실제의 발파현상 및 지반진동을 더욱 정확히 반영할 수 있도록 시험발파에 의한 계측자료와 역해석기법을 사용하여 발파하중을 산정하였다. 실제 계측데이타와 비교를 통해 기존 추정식에 의한 하중에 비해 발파현상 및 지반진동특성을 보다 정확히 반영하는 것을 볼 수 있었으며, 이를 이용한 수치해석을 통해 구조물의 진동영향을 평가하여 타당한 결과를 얻을 수 있었다.

토양침식량 산정에서 토양도 축척에 따른 적정 해상도 분석에 관한 연구 (The Analysis of Optimum Resolution with Different Scale of Soil Map for the Calculation of Soil Loss)

  • 이근상;장영률;조기성
    • 한국지리정보학회지
    • /
    • 제6권3호
    • /
    • pp.1-10
    • /
    • 2003
  • 최근 수정범용토양유실공식을 활용한 토양침식 연구가 활발히 진행중에 있으나, 실측자료와의 비교가 어렵기 때문에 계산된 결과를 정량적으로 검증하지는 못하였다. 본 연구에서는 RUSLE 모형을 구성하고 있는 인자들을 GIS 격자분석기법으로 분석하였으며, 특히 1:250,000 개략토양도를 주로 활용하였던 기존의 연구와 달리 1:25,000 정밀토양도를 활용한 토양침식인자를 제시하였다. 그리고 RUSLE 모형으로 계산한 토양침식량의 검증을 위해 보성강 유역의 비퇴사량 실측자료를 이용하였으며, 토양도의 축척을 고려한 결과 1:25,000 개략토양도의 경우는 120m의 해상도가 적합한 것으로 평가되었고 1:25,000 정밀토양도를 고려한 경우는 150m 해상도가 적합한 것으로 평가되었다.

  • PDF

SATEEC L모듈을 이용하여 토양유실량 산정 정확성이 유사량 예측에 미치는 영향 평가 (Evaluation of Effects of Soil Erosion Estimation Accuracy on Sediment Yield with SATEEC L Module)

  • 우원희;장원석;김익재;김기성;옥용식;김남원;전지홍;임경재
    • 한국농공학회논문집
    • /
    • 제53권2호
    • /
    • pp.19-26
    • /
    • 2011
  • SATEEC ArcView GIS system was developed using the Universal Soil Loss Equation (USLE) and sediment delivery ratio (SDR) modules. In addition, time-variant R and C modules and $R_5$ module were developed and integrated into the SATEEC system in recent years. The SATEEC ArcView GIS 2.1 system is a simple-to-use system which can estimate soil erosion and sediment yield spatially and temporarily using only USLE input data, DEM, and daily rainfall dataset. In this study, the SATEEC 2.1 system was used to evaluate the effects of USLE LS input data considering slope length segmentation on soil erosion and sediment yield estimation. Use of USLE LS with slope length segmentation due to roads in the watershed, soil erosion estimation decreased by 24.70 %. However, the estimated sediment yield using SATEEC GA-SDR matched measured sediment values in both scenarios (EI values of 0.650 and EI 0.651 w/o and w/flow segmentation). This is because the SATEEC GA-SDR module estimates lower SDR in case of greater soil erosion estimation (without flow length segmentation) and greater SDR in case of lower soil erosion estimation (with flow length segmentation). This indicates that the SATEEC soil erosion need to be estimated with care for accurate estimation of SDR at a watershed scale and for accurate evaluation of BMPs in the watershed.

유역 토양 수분 추적에 의한 유출 모형 (Daily Streamfiow Model based on the Soil Water)

  • 김태일;여재경;박승기
    • 한국농공학회지
    • /
    • 제33권4호
    • /
    • pp.61-72
    • /
    • 1991
  • A lumped deterministic model(DAWAST model) was developed to predict the daily streamflow. Since the streamflow is dominantly determined by the soil water storage in the watershed, the model takes the soil water accounting procedures which are based on three linear reservoirs representing the surface, unsaturated, and saturated soil layers. The variation of soil water storage in the unsaturated zone is traced from the soil water balance on a daily basis. DAWAST model consists of 5 parameters for water balance and 3 parameters for routing. A optimization technique of unconstrained nonlinear Simplex method was applied for the determination of the optimal parameters for water balance. Model verification was carried out to the 7 hydrologic watersheds with areas of 5.89-7,126km$^2$ and the results were generally satisfactory. The daily streamflow can be arbitrarily simulated with the input data of daily rainfall and pan evaporation by the DAWAST model at the station where the observed streamflow data of short periods are available to calibrate the model parameters.

  • PDF