• Title/Summary/Keyword: Soil humic acid

Search Result 127, Processing Time 0.027 seconds

Responses of Low-Quality Soil Microbial Community Structure and Activities to Application of a Mixed Material of Humic Acid, Biochar, and Super Absorbent Polymer

  • Li, Fangze;Men, Shuhui;Zhang, Shiwei;Huang, Juan;Puyang, Xuehua;Wu, Zhenqing;Huang, Zhanbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1310-1320
    • /
    • 2020
  • Low-quality soil for land reuse is a crucial problem in vegetation quality and especially to waste disposal sites in mining areas. It is necessary to find suitable materials to improve the soil quality and especially to increase soil microbial diversity and activity. In this study, pot experiments were conducted to investigate the effect of a mixed material of humic acid, super absorbent polymer and biochar on low-quality soil indexes and the microbial community response. The indexes included soil physicochemical properties and the corresponding plant growth. The results showed that the mixed material could improve chemical properties and physical structure of soil by increasing the bulk density, porosity, macro aggregate, and promote the mineralization of nutrient elements in soil. The best performance was achieved by adding 3 g·kg-1 super absorbent polymer, 3 g·kg-1 humic acid, and 10 g·kg-1 biochar to soil with plant total nitrogen, dry weight and height increased by 85.18%, 266.41% and 74.06%, respectively. Physicochemical properties caused changes in soil microbial diversity. Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, Planctomycetes, and Proteobacteria were significantly positively correlated with most of the physical, chemical and plant indicators. Actinobacteria and Armatimonadetes were significantly negatively correlated with most measurement factors. Therefore, this study can contribute to improving the understanding of low-quality soil and how it affects soil microbial functions and sustainability.

폐기물 매립지 침출수와 침출수 내의 휴믹물질이 GCL의 투수계수에 미치는 영향

  • 한영수;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.208-211
    • /
    • 2001
  • Geosynthetic Clay Liners (GCLs) have been used for the applications of the hydraulic containment system in landfill due to inexpensive costs, simple workability and distinguished ability as a barrier material. However, bentonite of GCLs is easy to be damaged by the chemical solutions. Thus, there is a need to evaluate the potential susceptibility of GCLs causing Increase the hydraulic conductivity when GCLs are exposed to raw leachate and dissolved humic substances from landfill leachate. The hydraulic conductivity tests were performed with flexible-wall permeameter (the falling -headwater/rising -tailwater procedure) in order to verify the potential susceptibility of GCLs. The values of the hydraulic conductivity conducted with raw leachate as a permeant liquid increased considerably; however, The change of the hydraulic conductivity in the case of humic and fulvic acid were not worthy of notice. As the results of swelling tests of bentonite, however, humic substances can affect badly on the dispersion behavior of bentonite. These results indicate that humic substances dissolved in leachate could reduce the hydraulic conductivity of GCLs in landfill.

  • PDF

Effect of Humic Substances on the Simultaneous Removal of Nitrate and Phosphate in a Micellar-Enhanced Ultrafiltration (MEUF) (미셀 한외여과(MEUF)를 이용한 질산성 질소와 인산의 동시제거 시 휴믹산의 영향)

  • 김보경;백기태;김호정;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.30-36
    • /
    • 2003
  • The effect of humic acid on the simultaneous removal of nitrate and phosphate was investigated in a micellar-enhanced ultrafiltration (MEUF). At the low molar ratio of cetylpyridinium chloride (CPC) to contaminants, the removal of nitrate was lower to 50% by 100 ppm of humic acid due to the competition for binding on micelles. At the molar ratio higher than 3, however, the removal of nitrate was over 80%. Phosphate was removed over 80% at the molar ratio higher than 1. The CPC and humic acid were rejected over 99 % by UF membrane. The flux did not decrease by 100 ppm of humic acid but rather slightly increased since the humic acid adsorbed on the membrane made the membrane more hydrophilic. As a result, humic acid did not diminish the performance of MEUF in the simultaneous removal of nitrate and phosphate.

Complexation of Cadmium(Ⅱ) with Humic Acids: Effects of pH and Humic Acid Origin

  • Lee, Mee-Hae;Choi, Se-Young;Chung, Kun-Ho;Moon, Hi-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.726-732
    • /
    • 1993
  • A comparative study on cadmium(II) complexation with three well characterized humic acids (SHA: soil humic acid from the Okchun Metamorphic Belt; AqHA: aquatic humic acid from Gorleben underground aquifer, Germany; CoHA: commercially available humic acid from the Aldrich Co.) was carried out in 0.1 M $NaClO_4$ at different solution pH(5.0, 5.5, and 6.0) using the ultrafiltration technique. The maximum binding ability (MBA) of the humic acids for cadmium(II) was observed to vary with their origins and solution pH. The results suggest that 1 : 1 complex predominates within the experimental range, and the conditional stability constants were calculated based on the assumption of cooperative binding, yielding log K values that were quite similar (CoHA: 4.17${\pm}$0.08; AqHA: 4.14${\pm}$0.07; SHA: $4.06{\pm} 0.12\;l\;mol^{-1}$ at pH 6.0) irrespective of humic acid origins or pH. By contrast a nonlinear Schatchard plot was obtained, using the cadmium(II) ion selective electrode speciation analysis method, which indicated that humic acid may have two or more classes of binding sites, with $log\;K_1\;and\;log\;K_2$ of 4.73${\pm}$ 0.08 and $3.31{\pm}0.14\;l\;mol^{-1}$ respectively.

Engineering Properties of Liquefied Stabilized Soil by Contents of Humic Acid (휴믹산 함유량에 따른 유동화 처리토의 공학적 특성)

  • Han, Sang-Jae;Ahn, Dong-Wook;Park, Jea-Man;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.229-237
    • /
    • 2009
  • A conventional way of backfilling has used sand or in-situ soil. It not only requires substantial amount of time and cost but also makes it particularly difficult to fill the bottom part and small cracks of a pipe. To address the problem with the conventional method of compaction, liquefied stabilized soil was proposed as an alternative because it reuses in-situ soil which can ensure sand supply while adjusting flowability and strength of the soil with design of mix proportion. With an aim to identify the mixing properties of liquefied stabilized soil depending on the organic content of in-situ soil, this study conducted indoor tests of material segregation, flowability, strength, and permeability by changing humic acid content of the soil. The results revealed that material segregation and flowability increased proportionally while strength decreased with the increased amount of humic acid. In the mean time, permeability of liquefied stabilized soil wasn't affected by organic content.

Characteristics of adsorption-desorption of herbicide paraquat in soils (제초제 paraquat의 토양중 흡.탈착 특성)

  • Lee, Seog-June;Kim, Byung-Ha;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • This study was conducted to investigate the adsorption-desorption characteristics of herbicide paraquat on clay minerals, humic materials, and soils under the laboratory conditions. Adsorption time of paraquat on clay minerals was faster than organic materials and soils. Adsorption amount on montmorillonite, 2:1 expanding-lattice clay mineral, was largest among the adsorbents tested. The adsorption capacity of paraquat was approximately 21 % of cation exchange capacity in soils, 45.1 % in kaolinite, and 80.6% in montmorillonite. Humic materials, humic acid and fulvic acid isolated from soil II, adsorbed larger amount of paraquat than kaolinite and soils. Distribution of tightly bound type of paraquat was larger in clay mineral and soils but loosely bound type was larger in humic acid and fulvic acid. In oxidized soil, the adsorption amount of paraquat was decreased to 85.1-95.5% of original soils. Distribution of unbound and loosely bound type of paraquat was decreased in oxidized soil but tightly bound type was increased. The competition cations decreased paraquat adsorption on humic materials and soils but not affected on montmorillonite. No difference was observed as the kinds of cations. In cation-saturated adsorbents, the adsorption amount was decreased largely in humic materials and soils but decreased a little in montmorillonite. The tightly bound type of paraquat in all adsorbents was not desorbed by pH variation, sonication, and cation application but loosely bound type was desorbed. However, the desorption amount was different as a kinds of adsorbents and desorption methods.

  • PDF

Studies on the Characteristics of Humic Acid and its Utilizations. (Ⅲ) Utilizations of Humic Acid (Nitrohumates) (土炭흄酸의 性狀및 應用에 關한 硏究 흄酸(니트로흄酸鹽)의 應用 (第3報))

  • Won Taik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.62-67
    • /
    • 1969
  • The adaptabilities of various nitrohumates (-K, -Na and $-NH_4$ salt) as a soil conditioner and a raw material for soluble phosphatic fertilizer were studied. 1. Nitrohumates (especially $-NH_4$ salt) protect the soil from fissures and control the phosphoric acid adsorptive functions of soils considerably. 2. Most effective nitrohumic acids as a soil conditioner were prepared with 15% $HNO_3$ solution composed of five times of original humic acids (by weight) at $80^{\circ}C$ for 2 hrs under continuous stirring. 3. When 50% (by weight) of $NH_4$-nitrohumate were added to apatites in water and boiled for 2 hrs, maximum 26% of $P_2O_5$(apatite contains 37% of $P_2O_5$) were changed into water soluble forms.

  • PDF

Adsorption and catalytic ozonation of aquatic organic compound by acid-treated granular activated carbon (산 처리한 활성탄을 이용한 수중 유기물의 흡착 및 오존 분해)

  • Nam, Yun-Seon;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.127-132
    • /
    • 2011
  • Humic substances is accounted for for the largest proportion in natural organic matter(NOM) and NOM is widely distributed in varying concentration in all aquatic and soil. They can affect water quality adversely in several ways by contributing undesirable color, complexing with metal and yielding metal concentrations exceeding normal solubility. Ozonation is one of the efficient treatments for degradation of humic substances which cause some problems in water treatment. Especially, the combination of ozone and granular activated carbon was applied to degradation humic acid in aquatic system. The aim of this work to test the available of acid-treated granular activated carbon as catalyst in the ozonation of humic acid.

  • PDF

Transformation of Nitroaromatics and Their Reduced Metabolites by Oxidative Coupling Reaction (Oxidative Coupling에 의한 Nitroaromatics와 그 환원대사산물의 전환)

  • Ahn, Mi-Youn;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.239-245
    • /
    • 1998
  • To investigate the formation of bound residue with soil organic materials by oxidative coupling, nitroaromatics and their reduced metabolites, the insecticide parathion and the herbicide asulam were incubated with oxidoreductase, laccase or horseradish peroxidase, in the presence or absence of humic monomers. Most of aminotoluenes and amino-nitrophenols were completely transformed while most of nitrotoluenes and nitrophenols remained unchanged by a lactase or horseradish peroxidase in the presence or absence of humic monomers. Amino-nitrotoluenes were not transformed without humic monomers, but the addition of various humic monomers caused a considerable difference in the transformation of amino-nitrotoluenes by a lactase or horseradish peroxidase. Amino-nitrotoluenes were most transformed in the presence of catechol, syringaldehyde and protocatechuic acid. The insecticide parathion with nitro group and its metabolite were not mostly transformed in the presence or absence of humic monomers. The herbicide asulam with amino group remained unchanged without humic monomers as well, but the stimulating effect on the transformation of asulam was caused by the addition of catechol, syringaldehyde, protocatechuic acid or caffeic acid with a lactase.

  • PDF

Solubilization of bromadiolone in humic acid pseudomicellar media

  • Prakash, John
    • Advances in environmental research
    • /
    • v.1 no.3
    • /
    • pp.211-221
    • /
    • 2012
  • Bromadiolone (BRD), a second generation anticoagulant often applied to the living environment to control rodents, is usually considered to have low environmental toxicity due to its poor solubility in water. In this study of the effect of humic acid (HA) on BRD using electronic absorption spectroscopy, it has been observed that BRD is appreciably solubilized even in low concentrations of aqueous HA solutions. The BRD solubilization efficiency of aqueous HA was found to be $2.39{\pm}0.14$ ($4.53{\pm}0.26{\mu}M\;ppm^{-1}$). It was also seen that BRD is reasonably solubilized in aqueous extract of farm soil.