• Title/Summary/Keyword: Soil flow

Search Result 1,594, Processing Time 0.023 seconds

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

Effects of Fracture Intersection Characteristics on Transport in Three-Dimensional Fracture Networks

  • Park, Young-Jin;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.27-30
    • /
    • 2001
  • Flow and transport at fracture intersections, and their effects on network scale transport, are investigated in three-dimensional random fracture networks. Fracture intersection mixing rules complete mixing and streamline routing are defined in terms of fluxes normal to the intersection line between two fractures. By analyzing flow statistics and particle transfer probabilities distributed along fracture intersections, it is shown that for various network structures with power law size distributions of fractures, the choice of intersection mixing rule makes comparatively little difference in the overall simulated solute migration patterns. The occurrence and effects of local flows around an intersection (local flow cells) are emphasized. Transport simulations at fracture intersections indicate that local flow circulations can arise from variability within the hydraulic head distribution along intersections, and from the internal no flow condition along fracture boundaries. These local flow cells act as an effective mechanism to enhance the nondiffusive breakthrough tailing often observed in discrete fracture networks. It is shown that such non-Fickian (anomalous) solute transport can be accounted for by considering only advective transport, in the framework of a continuous time random walk model. To clarify the effect of forest environmental changes (forest type difference and clearcut) on water storage capacity in soil and stream flow, watershed had been investigated.

  • PDF

Flow and Compressive Strength Properties of Low-Cement Soil Concrete (저시멘트 소일콘크리트의 유동성 및 압축강도 특성)

  • Park, Jong-Beom;Yang, Keun-Hyeok;Hwang, Chul-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This study examined the effect of binder-to-soil ratio(B/S) and water-to-binder ratio(W/B) on the flow and compressive strength development of soil concrete using high-volume supplementary cementitious materials. As a partial replacement of ordinary portland cement, 10% by-pass dust, 40% ground granulated blast-furnace slag, and 25% circulating fluidized bed combustion fly ash were determined in the preliminary tests. Using the low-cement binder incorporated with clay soil or sandy soil, a total of 18 soil concrete mixtures was prepared. The flow of the soil concrete tended to increase with the increase in W/B and B/S, regardless of the type of soils. The compressive strength was commonly higher in sandy soil concrete than in clay soil concrete with the same mixture condition. Considering the high-workability and compressive strength development, it could be recommended for low-cement soil concrete to be mixed under the following condition: B/S of 0.35 and W/B of 175%.

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

Effective power for interrill erosion by rainfall-induced sheet flow (강우유발 면상흐름에 의한 세류간 침식에 대한 유효동력)

  • Shin, Seung Sook;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.665-676
    • /
    • 2018
  • Interrill erosion on a hillslope results from the combined action of the detachment of soil particles by raindrop impact and the sediment transport of surface runoff. This study newly defined the rainfall power which detaches soil particles and the sheet-flow power contributed to sediment transport in terms of energy expenditure rate of soil erosion and presented the effective power equation for interrill erosion by rainfall-induced sheet flow. The rainfall and sheet-flow power was evaluated by factors related with rainfall, slope, and runoff and coefficients of the power equation were analyzed based on references. Futhermore it was confirmed that the relative scales between the rainfall power and the sheet-flow power according to rainfall intensity reflect on the hydrological response and physical process of interrill erosion. From application of the field data for surface runoff and soil erosion it was verified that the rainfall and sheet-flow power is an appropriate equation to estimate a interrill erosion.

Estimation of Spatial Soil Distribution Changed by Debris Flow using Airborne Lidar Data and the Topography Restoration Method (항공 Lidar 자료와 지형복원기법을 이용한 토석류 토사변화 공간분포 추정)

  • Woo, Choongshik;Youn, Hojoong;Lee, Changwoo;Lee, Kyusung
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • The flowed soil volume is able to be estimated simply from topographic data of before and after the debris flow. However, it is often difficult to obtain high resolution topographic data before debris flow because debris flow was occurred in mountainous area and airborne Lidar data was mainly surveyed in urban area. For this reason, Woo(2011) developed the topographic restoration method that can reconstruct the topography before the debris flow using airborne Lidar data. In this study, we applied the topographic restoration method on Inje county, Bongwha county and Jecheon city, produced topography data before debris flow that RMSE is from 0.16 to 0.34 m. Also, a soil variation was analyzed by topography data before and after debris flow, and it was used to estimate a real soil volume flowed to downstream and a spatial distribution showing collapses, flows, sedimentations appeared to debris flow.

Physically-based Soil-water Erosion Model - Based on Hairsine and Rose's Concept - (물리적인 기반의 토양침식모델 개발)

  • 김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.82-89
    • /
    • 1997
  • A physically-based soil-water erosion model with simple hydrology and Rose & Hairsine's erosion concept is described, and was implemented in the form of computer program. The model derived from the concept of stream power(Bagnold, 1977) considers settling velocity characteristics of the soil and distinguishes between the processes of entrainment and re-entrainment. It deals separately with rill flow and sheet flow, handles vegetation in terms of soil contact cover, and has the ability to simulate soil movement on nonuniform slopes. The model predicted sediment concentrations reasonably with the results of Mclsaac et al. (1990). It showed a capability to quantitatively predict the movement of soil on uniform and nonuniform slopes. Among the model parameters, soil depositability $({\phi})$ was the most sensitive from the sensitivity analysis.

  • PDF

토양의 종류에 따른 초음파토양세척의 투수특성 분석

  • 정하익;송봉준;이용수;유준;강동우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.258-261
    • /
    • 2004
  • In this study, the combined electrokinetic and ultrasonic remediation technique onto simple soil flushing was studied for the enhancement of water and liquid flows and the removal of contaminants in contaminated soils. The ultrasonic technique has been used to increase liquid flow and remove pollutants in contaminated soil. The laboratory soil flushing tests combined electrokinetic and ultrasonic technique were conducted using specially designed and fabricated devices to determine the effect of these both techniques. A series of laboratory permeability experiments involving the simple, electrokinetic, ultrasonic, and electrokinetic & ultrasonic flushing test were carried out. A soil admixed with sand and kaolin was used as a test specimen, and Pb and ethylene glycol were used as contaminants. An increase in out flow, permeability and contaminant removal rate was observed in electrokinetic and ultrasonic flushing tests.

  • PDF

Effect of Mixing Time by Mix Truck on the Physical Properties of Lightweight Air-mixed Soil (믹스트럭 내 교반시간이 경량기포혼합토의 물성에 미치는 영향)

  • Kim, Taehyo;Kim, Nayoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.15-25
    • /
    • 2015
  • As the physical and mechanical properties of lightweight air-mixed soil change in the procedure of transportation of mix truck, it is necessary to assure whether the properties during construction satisfy those in design. In this study, variations of properties of mixed soil after transportation by mix truck are proved by field test. Lightweight air-mixed soil used field test the unit weight of $9.0{\pm}1.0kN/m^3$, the flow value of $190{\pm}20mm$ was produced. To analyze variations of properties of mixed soil the unit weight and flow value of the sample before and after transport was measured unconfined compressive strength tests were performed. Mixing time was 19~175 minutes diversified. As the test results, it is known that the density, the flow value and the unconfined compressive strength of lightweight air-mixed soil change by transportation, but these values satisfy the specifications of material of air-mixed soil. After transportation the average value of the unit weight and flow value change in the flow of the $(+)0.10kN/m^3$, 4.8 mm respectively, the average change in the unit weight and the flow value due to the mixing time was constant. And unconfined compressive strength of 28-day specimen increases from 20 to $150kN/m^2$. But, these values do not have some clear relationship with the transportation time within 175 minutes which is longest test time. Consequently, Within 175 minutes the changes of properties by transportation are too small to show some problems in the construction field.

Slope Stability Analysis of Unsaturated Soil in Debris-Flow Occurrence Slopes (토석류 발생 사면의 불포화토 사면안정해석)

  • Kwak, Cheol-Soo;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.23-30
    • /
    • 2012
  • This paper is research results of slope stability analysis associated with seepage infiltration for unsaturated soil in debris-flow occurrence slopes. Site investigations were carried out in two slopes, located at Inje in Kangwon province where debris flow occurred in 2006 and at Yangpyung in Kyeunggi province where it occurred in 2010. For unsaturated soil sampled at the zone of debris-flow initiation, soil water characteristic curves with tempe pressure cells and shear strength parameters with newly designed shear strength apparatus were obtained respectively. The commertially available software SEEP/W was used to analyze seepage infiltration in unsaturated soil, based on their properties obtained from test results and the actual rainfall data at the moment of debris flow occurrence, and slope stability analysis with the program of SLOPE/W, associated with results of seepage analysis, was performed to simulate slope failure. As results of this research, seepage infiltration to unsaturated soil due to intensive rainfall was found to cause increase of ground water table as well as degree of saturation. Through this research slope stability analysis for unsaturated soil, considering the actual rainfall characteristic, might be a reasonable method of investigating characteristics of debris flow behavior, in particular, the moment of debris flow occurrence.