• 제목/요약/키워드: Soil extracts

검색결과 198건 처리시간 0.025초

서양등골나물의 환경적응력 : 중금속 축적과 Phenolic Compounds의 관계 (Environmental Adaptability of Eupatorium rugosum : Relationship between Accumulation of Heavy Metals and Phenolic Compounds)

  • 김용옥;박종야;이호준
    • The Korean Journal of Ecology
    • /
    • 제26권1호
    • /
    • pp.5-12
    • /
    • 2003
  • 서양등골나물의 잎 추출액을 미국자리공을 비롯한 5종의 식물에 처리하여 종자발아와 유식물생장을 조사하였고, total phenolic compounds와 중금속 이온을 서양등골나물의 분포에 따라 잎과 토양에서 분석하였다. 서양등골나물의 잎 추출액에 의한 미국자리공의 초기생장은 10%와 25%농도에서 촉진되었고, 토양 추출액의 total phenolic compounds는 잎 추출액의 total phenolic compound 보다 낮았다. 토양의 total phenolic compounds는 대조구와 10%, 25% 농도로 처리된 토양에서 유의한 차이가 없었으며 자연상태에서 잎 추출액 25%가 threshold 농도임을 확인하였다. 서양등골나물의 total phenolic compounds는 신갈나무림 임상에서 1.66 mg/1, 임연에서는 1.09 mg/l로 조사되었으므로 상부식생에 따른 total phenolic compounds는 유의한 차이를 보였으나, 각 토양에서는 상부식생에 따라 total phenolic compounds간에 유의한 차이를 보이지 않았다. 서양등골나 물의 잎 추출액 처리시 애기수영과 강아지풀의 발아율은 50% 이상의 농도에서 현저히 억제되었으나, 차풀의 발아율은 추출액의 농도에 따라 차이가 없었다. 유묘와 유근생장은 귀화종 그룹보다 자생종 그룹이 2배 이상 억제되었으며, 특히 서양등골나물의 추출액 농도 10%와 25%가 처리된 서양등골나물의 종자발아와 건중량은 대조구보다 촉진되었다. 서양등골나물의 phenolic compounds를 HPLC로 분석한 결과 caffeic acid (460.9 mg/1), benzoic acid (109.7 mg/l), protocatechuic acid (7.3 mg/l), ρ-hydroquinone (6.0 mg/l), cinnamic acid (2.7 mg/l), hydroquinone (0.23 mg/1) 순으로 분석되었다. 분석된 서양등골나물의 phenolic compounds 각각에 대한 미국자리공의 발아율은 caffeic acid (460.9 mg/l)치 농도가 높을지라도 이것이 낮은 cinnamic acid와 protocatechuic acid에서 현저한 억제현상을 보였다. 서양등골나물 임상의 토양보다 서양등골나물이 분포하지 않는 토양의 중금속 함량이 전반적으로 높았다. 특히 Al, Fe 및 Mn의 함량이 높았으며 이들 중금속은 total phenolic compound 함량이 높은 잎에 대부분이 축적되었다.

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • 한국작물학회지
    • /
    • 제69권1호
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

Comparison of Organic Carbon Composition in Profile by Using Solid 13C CPNMR Spectroscopy in Volcanic Ash Soil

  • Sonn, Yeon Kyu;Kang, Seong Soo;Ha, Sang Keun;Kim, Yoo Hak;Lee, Chang Hoon
    • 한국토양비료학회지
    • /
    • 제46권5호
    • /
    • pp.391-398
    • /
    • 2013
  • Soil organic carbon (SOC) has the potential to promote the soil quality for sustainability and mitigation of global warming. There is little information on organic carbon composition despite of having resistance of carbon degradation in soil. In this study, to understand the effect of volcanic ash on organic carbon composition and quantity in soil, we investigated characteristics of volcanic soil and compared organic carbon composition of soil and humic extract by using $^{13}C$-CPMAS-NMR spectra under soil profiles of Namweon series in Jeju. SOC contents of inner soil profiles were 134.8, 101.3, and 27.4 g C $kg^{-1}$ at the layer of depth 10-20, 70-80 and 90-100 cm, respectively. These layers were significantly different to soil pH, oxalate Al contents, and soil moisture contents. Alkyl C/O-alkyl C ratio in soil was higher than that of humic extracts, which was decreased below soil depth. Aromaticity of soil and humic extract was ranged from 29-38 and 24-32%, which was highest at the humic extract of 70-80 cm in soil depth. These results indicate that the changes of SOC in volcanic ash soil resulted from alteration of organic composition by pyrolysis and stability of organic carbon by allophane in volcanic ash soil.

A Study on Development of GNSS-based Measurement System for Monitoring Slope Site

  • Lee, jin-duk;Chang, ki-tae;Bhang, kon-joon
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.5-6
    • /
    • 2015
  • A GNSS based measurement system was constructed with not only the core sensors of a GNSS receiver, a TRS sensor and a soil moisture sensor but supplementary installation of power supply and radio communication for monitoring steep slope sites. The sensor combination extracts and transfers not only ground displacement in real-time but soil moisture content.

  • PDF

Direct Antimicrobial Activity and Induction of Systemic Resistance in Potato Plants Against Bacterial Wilt Disease by Plant Extracts

  • Hassan, M.A.E.;Bereika, M.F.F.;Abo-Elnaga, H.I.G.;Sallam, M.A.A.
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.352-360
    • /
    • 2009
  • The potential of three plants extracts, to protect potato plants against bacterial wilt caused by Ralstonia solanacearum was determined under greenhouse and field conditions. All soil drenching treatments of aqueous plant extracts of Hibsicus sabdariffa, Punica granatum and Eucalyptus globulus significantly reduced the disease severity compared with inoculated control. Although the applications of all three plant extracts resulted in similar reductions of disease severity in field up 63.23 to 68.39%, treatment of E. globulus leaf extract was found greater in restricting the symptom development than other the two plant extracts in the greenhouse. More than 94% reduction in the bacterial wilt symptom was observed in potato plants. All tested plant extracts were effective in inhibiting the growth of bacterial pathogen, not only in vitro, but also in stem of potato plants as compared with the inoculated control Potato plants treated with extract of H. sabdariffa reduced bacterial growth more effectively than treatment with P. granatum and E. globulus. Activity of defence-related enzymes, including peroxidase, polyphenoloxidase and phenylalanine ammonia lyase, were significantly increased in plants treated with the plant extracts compared to the control during the experimental period. In general, the higher enzymes activities were determined in both inoculated and non-inoculated treated potato plants after 8 days from plant extracts treatment. These results suggested that these plant extracts may be play an important role in controlling the potato bacterial wilt disease, through they have antimicrobial activity and induction of systemic resistance in potato plants.

Bioassay on Natural Herbicidal Potential in Common Thistle (Cirsium pendulum Fisch.)

  • Chon, Sang-Uk
    • 한국작물학회지
    • /
    • 제51권1호
    • /
    • pp.101-106
    • /
    • 2006
  • Common thistle contains water-soluble substances that are phytotoxic to neighboring plant species. A series of aqueous extracts from leaves, stems, roots and flowers of common thistle (Cirsium pendulum Fisch.) were assayed against alfalfa (Medicago sativa) seedlings to determine their allelopathy, and the results showed highest inhibition in the extracts from flowers and leaves, and followed by stems, and roots. The extracts at 40 g dry tissue $L^{-1}(g\;L^{-1})$ applied on filter paper in a Petri-dish significantly inhibited root growth of test plant by 87%. Methanol extracts at 100 g $L^{-1}$ from leaves inhibited root growth of alfalfa and barnyardgrass (Echinochloa crus-galli) by 89 and 98%, respectively. Hexane and ethylacetate fractions of common thistle reduced alfalfa root growth more than did butanol and water fractions. Incorporation into soil with the leaf residues at $100g\;kg^{-1}$ inhibited shoot fresh weights of barnyardgrass and eclipta (Eclipta prostrate) by 88 and 58%, respectively, showing higher sensitivity in grass species. These results suggest that common thistle plants had allelopathic potential for eco-friendly vegetation management, and that especially their activities were differently exhibited depending on plant part.

토양 중의 비휘발성 염기/중성 유기 Priority Pollutants 동시 분석에 관한 연구 (Simultaneous Analysis of Semi-Volatile Organic Base/Neutral Priority Pollutants in Soil)

  • 이승석;박교범;이석근
    • 대한화학회지
    • /
    • 제38권6호
    • /
    • pp.418-426
    • /
    • 1994
  • 미국 환경청이 지정한 129종의 priority polluatants 중 40종의 비휘발성 염기/중성 유기화합물을 대상물질로 선정하였다. 분석방법으로 초음파 추출법(sonication extraction)과 Soxhlet 추출법(Soxhlet extraction)을 이용하여 토양에 있는 유기물을 추출 및 농축하여 기체크로마토그래프/질량분석기-SIM(selected ion monitoring)법으로 검출하였다. 표준물질이 첨가된 토양시료에 두 추출법을 적용하여 회수율을 구하고 정확도, 정밀도 및 검출한계를 측정하여 미량 분석의 가능성을 조사하였다.

  • PDF

Determination of Monocrotophos Residues by HPLC

  • Lee, Young-Deuk;Kwon, Chan-Hyeok
    • 한국환경농학회지
    • /
    • 제23권4호
    • /
    • pp.245-250
    • /
    • 2004
  • An analytical method was developed to determine monocrotophos residues in apple, citrus, and soil using high-performance liquid chromatography (HPLC) with ultraviolet absorption detection. Monocrotophos was extracted with acetone from apple, citrus and moist soil samples. The extract was concentrated, added with saline water, and subjected to n-hexane washing to remove nonpolar co-extractives. Dichloromethane partition was then followed to recover monocrotophos from the aqueous phase. Silica gel column chromatography was employed to further purify the extract prior to HPLC determination. Reverse-phase HPLC using an oct-adecylsilyl column was successfully applied to separate and quantitate the monocrotophos residue in sample extracts at the wavelength of 230 nm. Overall recoveries of monocrotophos from fortified samples averaged $95.3{\pm}2.1%$ (n=6), $970{\pm}0.7%$ (n=6), and $92.8{\pm}4.3%$ (n=12) for apple, citrus, and soil, respectively. The proposed method was quite reproducible and sensitive enough to replace the troublesome gas-liquid chromatographic analysis for monocrotophos residues.

High-Performance Liquid Chromatographic Determination of Tricyclazole Residues in Rice Grain, Rice Straw, and Soil

  • Lee, Young-Deuk;Lee, Jung-Hun
    • Applied Biological Chemistry
    • /
    • 제41권8호
    • /
    • pp.595-599
    • /
    • 1998
  • An analytical method was developed to determine tricyclazole residues in rice grain, straw, and soil using high-performance liquid chromatography (HPLC) with ultraviolet absorption detection. Tricyclazole was extracted with methanol from moist rice grain, straw, and soil samples. n-Hexane washing was employed to remove nonpolar co-extractives during liquid-liquid partition. Tricyclazole was then extracted with dichloromethane from alkaline aqueous phase, while acidic interferences remained in the phase. Dichloromethane extract was further purified by silica gel column chromatography prior to HPLC determination. Reverse-phase HPLC using an octadecylsilyl column was successfully applied to separate and quantitate the tricyclazole residue in sample extracts monitored at ${\lambda}_{max}$ 225nm. Recoveries from fortified samples averaged $95.5{\pm}3.0%\;(n=6),\;87.5{\pm}20.%\;(n=6),\;and\;84.3{\pm}2.8%$ (n=12) for rice grain, straw, and soil, respectively. Detection limit of the method was 0.02 mg/kg for rice grain and soil samples while 0.05 mg/kg for rice straw samples. The proposed method was reproducible and sensitive enough to evaluate the safety of tricyclazole residues in rice grain, straw, and soil.

  • PDF

Management of Tomato Root-knot Nematode Meloidogyne incognita by Plant Extracts and Essential Oils

  • Abo-Elyousr, Kamal A.M.;Awad, Magd El-Morsi;Gaid, M.A. Abdel
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.189-192
    • /
    • 2009
  • The effect of plant extracts of eucalyptus (Eucalyptus chamadulonsis), garlic (Allium sativium), marigold (Tagetes erecta) and neem (Azadirachta indica) and essential oils were tested on the suppression of root-knot nematode Meloidogyne incognita under greenhouse and field conditions. In vitro study, all tested treatments had nematicidal effect on nematode juveniles after 24 and 48 hours from exposures. The highest percentage of nematode mortality was achieved by application of neem extract (65.4%), essential oils (64.4%) and marigold extract (60.5%), followed by garlic and eucalyptus extracts (38.7-39.5%). Under greenhouse and field conditions, neem extract and essential oils treatments were more effective in reducing population numbers of the M. incognita in soil and root gall index compared to other treatments. In field experiments, the maximum protection of tomato plant against root-knot nematode was obtained by application of neem and essential oil treatments, 44.2 and 32.6%, respectively.