• Title/Summary/Keyword: Soil eutrophication

Search Result 56, Processing Time 0.026 seconds

Prediction of Nitrogen Loading from Forest Stands in Eutrophication of Lake (호소 부영양화에 있어서 산림임반으로부터 질소부하 평가를 위한 조사)

  • Chung, Doug-Young;Lee, Young-Han;Lee, Jin-Ho;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.430-437
    • /
    • 2010
  • The continuous release of nutrient sources into natural water resource can be a continuing problem in eutrophication, as well as severe reductions in water quality. However, any desirable measure is not developed yet even though so many researches and efforts have been done to solve this problem. Forest as one of troublesome nonpoint sources may contributes most to nutrient loading, but the loading of N and P from forest in order to grasp the eutrophication potential of nonpoint sources has not been evaluated. The nutrient sources from the organic litter accumulated on the surface of forest soils can be a critical factor in continuity of eutrophication of a lake. The decomposition rate of litter can be estimated to predict release of N and P from the forest stand. The loss rate of nitrogen is complicated but depends in part upon the physical matrix of the element. Therefore, long-term nutrient budget and flux estimates at stand would be useful tools in calculating potential nutrient fluxes into the watercourses in a sustainable way. The present investigation can give insight to the actual situation of the eutrophication potentials of forest as the practical nonpoint sources.

Measurement of Phosphorus in Soil and Water

  • Kim, Hye-Jin;Hwang, Seong-Woo;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.539-544
    • /
    • 2011
  • The relative focus about phosphorus (P) which causes eutrophication characterized by increased growth of undesirable algae has increased in recent years. Phosphorus forms in soil and water include both organic and inorganic forms. There are also a large number of soil P determination methods that have been designed to account for various types of P and mechanisms controlling the chemistry of P in soil, water, and residual materials for environmentally relevant forms of P. However, phosphorus forms in soil, water, and residual materials are also difficult to standardize with any reasonable consensus, due to the number of different disciplines involved. Hence, it is essential to accurately define how P can be measured in soil, water, or residual material samples to avoid potential misinterpretations or inappropriate recommendations in determining amount and types of P. Therefore, we reviewed the testing methods which have appeared in the scientific literature to provide an overview of the soil test P most commonly used.

Underappreciated Resource Phosphorus : Implications in Agronomy

  • Kim, Hye-Jin;Ryu, Jin-Hee;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • Phosphorus (P) which is required by all living plants and animals is an important input for economic crop and livestock production systems. Phosphorus containing compounds are essential for photosynthesis in plants, for energy transformations and for the activity of some hormones in both plants and animals. Loss of soil P to water can occur in particulate forms of P with eroded surface soil and in soluble forms in runoff, soil interflow, and deep leaching. The excessive losses of P from agricultural systems can degrade water quality of surface waters, resulting in accelerating eutrophication. Thus, P is often the limiting element and its control is of prime importance in reducing the accelerated eutrophication of surface waters. However, reserves of phosphate begin to run out, the impacts are likely be immense in terms of rising food prices, growing food insecurity. This paper reviews underappreciated resource as a key component of fertilizers and one of controversial pollutant in terms agronomy and environment.

Assessments of the Nutrient Losses in the Sloped Farm Land (경사지 밭토양에서의 양분유실량 평가)

  • Jung, Pil-Kyun;Eom, Ki-Cheol;Ha, Sang-Keon;Zhang, Yong-Seon;Hur, Seung-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.47-50
    • /
    • 2009
  • Nutrient losses, especially nitrogen and phosphorus, in agricultural runoff can contaminate surface and ground water, leading to eutrophication. Thus, erosion control is crucial to minimizing nutrient losses from agricultural land. Assessments of various erosion control practices were carried out under various cropping system, soil management practices, and slope conditions by means of a lysimeter study and under artificial rainfall. Soil and nutrient losses were monitored in a small agricultural field to evaluate the soil conservation practices. Nutrient losses occur in runoff and leachate (dissolved nutrient) and in sediments (particulate nutrient). Dissolved nitrates accounted for the majority (about 90%) of nitrate transport within the soil. Particulate phosphate in sediments represented the majority (60% to 67%) of phosphate transport. Recently, engineering and agronomic erosion-control practices haver been used to reduce erosion problems in fields on slopes. These practices reduced soil loss, runoff, and nutrient loss to 1/6, 1/2,and 1/3 their original levels, respectively. Bioavailable particulate phosphate in sediments represents a variable but longterm source of phosphate for algae. Dissolved nitrate and phosphate are immediately available for algal uptake, so reducing fluxes of these nutrients should also reduce the risk of eutrophication.

Effects of Group Breedling of Herons of Pine Community (백로와 왜가리 집단번식이 소나무군집에 미치는 영향)

  • Mun, Hyeong-Tae;Sam-Rae Cho
    • The Korean Journal of Ecology
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 1996
  • Effects of group breeding of herons on pine community were studied at Pomaeri, in Yangyang, Kangwon Province, Korea. This site has been protected as a Natural Monument (No. 229) since 1970. Herons have used this habitat as a breeding site from] anuary to October every year. In 1995, more than 500 herons were observed in this habitat. Many big pine trees are dying or already dead due to group inhabitation of herons, and no pine saplings were found at forest floor in this habitat. Nutrient contents of soil in this habitat were much higher than those in control plot. This must be due to the addition of feces from herons and of thin twigs and other organic materials from the canopy and bird nests. Species composition of herb layer in this habitat was quite different from that in control plot. Breeding site was dominated by Humulus japonicus. Persiearia perJohata, Persicaria thunbergii. and Commelina communis. which are indicator species of soil eutrophication.

  • PDF

인산염을 이용한 납오염 토양 고정화 반응의 가속화

  • 이의상;이상봉;이인원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.201-204
    • /
    • 2004
  • Immobilization is seen as a promising technology for lead remediation. In a laboratory experiment, immobilization of lead with soluble P was tested as a function of reaction time and P concentration. The P treated with an acidic solution to enhance heavy metal immobilization was worked into the soil, and within 7 days, lead was stabilized. Different molar ratios of soluble phosphates (super-phosphate and KH$_2$PO$_4$) would be considerably effective to accelerate the formation of highly insoluble minerals due to the lack of leachable Pb in the contaminated soil. Although it was demonstrated that the addition of soluble phosphates with an acidic solution significantly reduced available lead in soil up to over 95%, remaining phosphorus in soil matrix might cause a possible groundwater eutrophication in the near future.

  • PDF

Enhanced ion-exchange properties of clinoptilolite to reduce the leaching of nitrate in soil

  • Kabuba, John
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • The leaching of nitrate from soil increases the concentration of elements, such as nitrogen, phosphorus, and potassium, in water, causing eutrophication. In this study, the feasibility of using clinoptilolite as an ion-exchange material to reduce nitrate leaching in soil was investigated. Soil samples were collected from three soil depths (0 - 30, 30 - 90, and 90 - 120 cm), and their sorption capacity was determined using batch experiments. The effects of contact time, initial concentration, adsorbent dosage, pH, and temperature on the removal of NO3- were investigated. The results showed that an initial concentration of 25 mg L-1, a contact time of 120 min, an adsorbent dosage of 5.0 g/100 mL, a pH of 3, and a temperature of 30 ℃ are favorable conditions. The kinetic results corresponded well with a pseudo-second-order rate equation. Intra-particle diffusion also played a significant role in the initial stage of the adsorption process. Thermodynamic studies revealed that the adsorption process is spontaneous, random, and endothermic. The results suggest that a modification of clinoptilolite effectively reduces the leaching of nitrate in soil.

Community Structure and Soil Properties of Grassland in the Vicinity of Yoch’on Industrial Complex (여천공단 주변 초지군락의 구조와 토양 특성)

  • 류재근;이종영;이윤영;문형태
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.421-426
    • /
    • 1999
  • Species composition, species diversity, standing biomass and soil properties of the grasslands, which are developed in the vicinity of Yoch’on Industrial Complex, were investigated. The grassland divided into three types, mugwort (Artemisia princeps var. orientalis) community, porkweed (Phytolacca americana) community and eulalia (Miscanthus sinensis) community by physiognomy Standing biomass of mugwort community, porkweed community and eulalia community was 5,645 g/$m^2$, 2,827 g/$m^2$ and 9,048 g/$m^2$, respectively. Species diversity of mugwort community, porkweed community and eulalia community was 1.03, 0.54 and 0.26, respectively. Total N, available P, total S and soluble S of the top soil in this grassland were much higher than those in other areas. Most of the species in this grassland are indicator species of soil eutrophication.

  • PDF

Runoff Loading of Nutrients from a Paddy Field during Non-Cropping Season (비영농기간 단일필지 논으로부터 영양물질의 유출량)

  • 조재영;한강완;최진규;구자웅;손재권
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.759-764
    • /
    • 1999
  • In intensive agriculture, exceeded chemical fertilizer application would increase the concentration of nitrate nitrogen in groundwater. Consequently, it could bring the eutrophication in lakes and streams. The present study examined runoff loading of nitrogen and phosphorus from the paddy field during non-cropping season. The runoff loading of total-N, ammonia-N, nitrate-N and total-P were 12.96kg/ha, 5.42kg/ha, 1.52kg/ha and 1.41kg/ha. When the runoff loading of nutrients was compared by runoff water and sediments. About 70-80% of total-N by runoff water and the rest 20-30% by runoff sediments were flowed into streams. But 60-70% of total-P by runoff sediments and the rest 30-40% by runoff water were flowed into streams. The phosphorus compounds, which were flowed into streams by runoff sediments and then sedimented, keep exchanging with water at water body in undelivered condition. And it moves gradually into water layer. This process can cause eutrophication continually and repeatedly in water environment. So, a sound program is needed to reduce soil erosion from farmlands.

  • PDF

Variation of Non-Point Source Pollution according to AMC Condition Using Probable Rainfall (확률강우량을 이용한 AMC 조건에 따른 비점원 오염량의 변화)

  • 안승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.76-88
    • /
    • 2000
  • AGNPS model is applied in this study to analyze the changes of non-point source pollutant according to AMC condition using probable rainfall. Probable rainfall of H-dam area by Gumber's extreme value distribution is computed through frequency analysis for each return period. 35 coarse grids are subdivided into 134 find grids of finite differential network to analyze peak flow soil loss quantity and nutrients of study area and the modified CN estimation equation shows good result about rainfall events-peak flow relationship. And as the consequence of estimation of soil loss quantity for each rainfall event soil loss quantity shows 120%-170% of actual soil loss quantity Regression analysis for the observed and calculated values of flow T-P AMC has an important effect on nutrients concentration of outflow and it if found that the excessive fertilization under AMC III condition may cause eutrophication by nutrients because the range of increase of outflow concentration appears relatively high.

  • PDF