• Title/Summary/Keyword: Soil environmental

Search Result 9,289, Processing Time 0.037 seconds

A Study on SPI(soil pollution index) in City Land

  • Kim, Young-Sik;Kim, Gi-Sun;Song, Mi-Ra
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.6
    • /
    • pp.502-505
    • /
    • 2007
  • To estimate the soil quality of Miryang area, soil analysis were conducted according to the city and out of city of soil expenses at according to analysis components and heavy metal pollution of irradiation sampling sites. The through soil components the principal element about the 71% $SiO_2\;and\;Al_2O_3$, the pH of field area near the city center was lower than that of the other field area, which indicated that this acidification was probably attributed to the acid rain caused by the traffic exhaust gas such as $SO_x\;and\;NO_x$. Acidification was more severe in the field area than in the farming land. The concentration of five heavy metals such as Cu, Cd, Pb, As and Cr were found to be lower than the standard of soil pollution. An assessment using the SPI(Soil Pollution Index), which was developed to estimate an overall soil quality, was performed. Each SPS(Soil Pollution Score) were evaluated with the results of the data from this study. The soil quality of most area of Miryang land was determined to Class 1, which indicated that the soil was healthy.

Effect of cement dust on soil physico-chemical properties around cement plants in Jaintia Hills, Meghalaya

  • Lamare, R. Eugene;Singh, O.P.
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.409-417
    • /
    • 2020
  • Investigation was carried out to assess the effect of cement dust deposition on the physico-chemical properties of soil near some cement plants in Jaintia Hills, Meghalaya. Soil samples were collected and analysed and compared with the control site. Comparison of various soil physico-chemical parameters revealed that cement dust emanating from cement plants has changed the soil quality in the surrounding areas of cement plants. The normal soil pH in the area is generally acidic. However, due to the continuous deposition of cement dust soil pH was found slightly alkaline near the cement plants. The higher values of soil parameters such as electrical conductivity and bulk density were also noticed near the cement plants. However, lower values of water holding capacity, soil moisture content, soil organic carbon and total nitrogen content were found compared to the control sites. The effect of cement dust deposition on soil is more in areas nearer to the cement plants. At present the changes may not be so serious but if this trend continues, soil properties of a vast area around the cement plants are likely to change leading to multiple effects on flora, fauna and socio-economy of the area.

Soil Chemical Properties in Asian Dust Source region in Northern China (황사발생지역에서 토양입자의 화학적 특성)

  • Han, J.S.;Shin, Sun-A;Kong, B.J.;Park, M.S.;Park, S.U.;Kim, S.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.6
    • /
    • pp.277-284
    • /
    • 2004
  • The chemical composition and properties of soil were determined at selected sites, such as Loess plateau, Gobi and sand deserts in northern China, where most dust storms occur. Although the transport of this sort of dust storms to Korean peninsula is a well-documented phenomenon, there is not enough information about the very source regions. In this reason, this study tried to measure the chemical composition, including soil elements, anthropogenic elements and ions for soil samples so that certain properties of some major source regions of Asian Dust can be provided. Furthermore, the results are classified into four types of soil like Loess, Loess & sand, Gobi, and sand in order to identify the characteristics and difference among the types. $(X/Al)_{crust}$ values for each soil type were also calculated in this study and compared with those of other references including Asian Dust material(ADM). The results indicated that Ca contribution was higher than Al in all the soil types of this study including ADM and, compared with the values of urban area, contribution of anthropogenic elements such as Cr, Pb, Zn was quite low. However, it must be noted that there is such a variation in the result of soil composition, but it is also certain that the very source region soil composition resolved from this study could support the enhanced study on Asian Dust phenomenon in Korea.

Strategic environmental impact assessment proposal in consideration of the complex characteristics of the soil - Around the dam construction long-term plan - (토양의 복합적 특성을 고려한 전략환경영향평가 방안 - 댐건설 장기계획을 중심으로 -)

  • Kim, Tae Heum;Park, Sun Hwan;Hwang, Sang Il;Yang, Jihoon;Lee, Jai-Young;Hwang, Joung Bae
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.1
    • /
    • pp.51-62
    • /
    • 2016
  • Recently, soil has been recognized as a crucially important resource that even can change the quality of life. Also, recent studies have gradually mentioned the importance of assessing soil impact induced by development plans and projects. In this study, after detailed soil assessement items were selected from our national environmental policies and international agreements, they were tested for the long-term dam construction planning in order to ensure more suitable implementation of strategic environment assessment(SEA). We found that soil resources can be impacted by diverse factors such as soil erosion, soil organic matters, soil moving, soil biodiversity, and others. Such detailed factors are found to be overlapped with the pervious EIA factors. Accordingly, additional studies would be required for finding out more reasonable connection between assessment factors during any SEA progress.

Geotechnical Variability Characterization of Songdo area in Incheon by Field Tests (현장시험을 이용한 인천 송도지반의 변동성 분석)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Lee, Ju-Hyung;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1435-1440
    • /
    • 2009
  • Geotechnical variability is a complex feature that results from many independent sources of uncertainties, and is mainly affected by inherent variability and measurement errors. This study evaluates the coefficient of variation (COV) of soil properties at Song-do region in Korea for evaluating inherent soil variability. Since soil variability is sensitive to soil layers and soil types, the COVs by soil layers (reclaimed layer and marine layer) and the COVs by soil types (clay and silt) were separately evaluated. It is observed that geotechnical variability of marine layer and clay is relatively smaller than that of reclamation layer and silt.

  • PDF

Relationship between the Cathodic Protection of Pipe Buried in Soil and Environmental Factors (토양 매설 배관의 음극방식과 환경인자 간의 상관관계)

  • Choi, S.H.;Won, S.Y.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.372-380
    • /
    • 2022
  • The external corrosion control of buried pipes can be achieved by a combination of coatings and cathodic protection to maximize effectiveness. One of the factors affecting cathodic protection is the environmental soil conditions. Because soil is a kind of electrolyte, the environmental conditions of soil may be changed by the atmospheric environment. Therefore, in this study, changes in environmental soil factors by atmospheric environmental factors were monitored. In cathodic protection, on-potential and off-potential were measured from December 2021 to July 2022. The effects of external environmental factors and soil environmental factors on cathodic protection were analyzed. Changes in outdoor temperature affected soil temperature, and soil conductivity had a proportional relationship with soil humidity, but outdoor humidity and precipitation did not significantly affect humidity and conductivity of the soil. In contrast, in cathodic protection, the on-potential was affected by temperature, humidity, the conductivity of the soil, and the anode used, but the off-potential was little affected by these factors.

Estimation of soil Quantity and Environmental Effect on Dredged Soil (준설오니의 토량 산출 및 성분분석)

  • 신은철;오영인
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.13-21
    • /
    • 2000
  • Detention basin is the temporary holding pond of treated water prior to flow out to the sea. It is very common to dredge the soil from the bottom of detention basin to keep up the water holding capacity. In this study, the amount of volume reduction of dredged soil from detention basin was estimated based on the laboratory test results. The percentage of soil particles in dredged organic soil is about 12.5∼21.9% by weight. The content of heavy metal and environmental effect for dredged soil itself and solidified dredged soil were analysed and the results are meet the standards of environmental requirement.

  • PDF

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

Environmental Characteristics of Natural Radionuclides in Groundwaters in Volcanic Rock Areas: Korea (국내 화산암 지역 지하수 중 자연방사성 물질에 대한 환경 특성)

  • Jeong, Do Hwan;Kim, Moon Su;Ju, Byoung Kyu;Hong, Jung Ki;Kim, Dong Su;Kim, Hyun Koo;Kim, Hye Jin;Park, Sun Hwa;Han, Jin Seok;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.36-45
    • /
    • 2013
  • We analyzed natural radionuclides in 80 wells in volcanic rock areas and investigated environmental characteristics. Uranium and radon concentrations ranged from ND to $9.70{\mu}g/L$ (median value: 0.21) ${\mu}g/L$, 38~29,222 pCi/L (median value: 579), respectively. In case of gross-${\alpha}$, 26 samples exceeded MDA (minimum detectable activity, < 0.9 pCi/L) value and the activity values ranged from 1.05 to 8.06 pCi/L. The radionuclides concentrations did not exceed USEPA MCL (maximum contaminant level) value of Uranium ($30{\mu}g/L$) and gross-${\alpha}$ (15 pCi/L). But Rn concentrations in 4 samples exceeded USEPA AMCL (Alternative maximum contaminant level, 4,000 pci/L) and one of them showed a significantly higher value (29,222 pCi/L) than the others. The levels of uranium concentrations in volcanic rock aquifer regions were detected in order of andesite, miscellaneous volcanic rocks, rhyolite, basalt aquifer regions. Radon, however, was detected in order of miscellaneous volcanic rocks, rhyolite, andesite, basalt aquifer regions. The correlation coefficient between uranium and radon was r = 0.45, but we found that correlations of radionuclides with in-situ data or major ions were weak or no significant. The correlation coefficient between the depth of wells and uranium concentrations was a slightly higher than that of depth of wells and radons. Radionuclide concentrations in volcanic rock aquifers showed lower levels than those of other rock aquifers such as granite, metamorphic rock aquifers, etc. This result may imply difference of host rock's bearing-radioactive-mineral contents among rock types of aquifers.