• Title/Summary/Keyword: Soil environment

Search Result 7,343, Processing Time 0.03 seconds

The Behaviors of Phosphorus-32 and Ptoassium-42 under the Control of Thermoperiod and Potassium Level (가리(加里)와 온도주기성(溫度週期性)이 고구마 생육(生育) 및 인(燐)-32, 가리(加里)-42 동태(動態)에 미치는 영향(影響))

  • Kim, Y.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.89-115
    • /
    • 1968
  • 1. The experiment was carried out for investigating the interaction between potassium nutrition and thermoperiod (as an environment regulating factor) in relation to behaviors of several nutrients including phosphorus-32 and Potassium-42 in IPOMOEA BATAS. 2. To obtain same condition to trace the behaviors of phosphorus and potassum-42 they were simultaneously incorporated to roots. The determination of each CPM by counting twice with adequate interval and calculating true CPM of each isotope according to different half-life, was carried out with satisfactory. 3. Some specific symptoms i.e, chlorosis and withering of growing point under the condition of lower potassium level were found and was accelerated by the low night temperature. 4. A manganese shortage in growing point of the lower potassium level was found by activiation analysis and very low distribution ratio of phosphorus-32 and potassium-42 in the growing point of the lower potassium level was manifested, though the contents of nitrogen, phosphorus, potassium, sodium and magnesium were not in great difference. 5. In addition to the low water content with appearence of "hard", shorterning internode and lower ratio of roots to shoot as well as the symptoms of potassium deficiency such as brown spot in leaf blade and necrosis of leaf margin were appeared at later stage of experiment at the lower potassium level. 6. Very stimulating vegetative growth, e.g, large plant length, leaf expansion, increasing node number and fresh weight as well as high ratio of roots to shoot, high water content was resulted in the condition of higher potassium level. 7. A specific interaction between higher potassium level and thermoperiod was found, that is, the largest tuber production and the largest ratio of roots to shoot were resulted in the combined condition of higher potassium level and constant temperature while the largest plant length, fresh weight etc. i.e. the most stimulative vegetative growth was resulted in the combined condition of higher potassium level and low night temperature. 8. Comparatively low water content in the former condition of stimulative tuber production was resulted(especially at the tuber thickening stage), while high water content in the latter condition of stimulative vegetation was resulted though the higher potassium level made generally high water contents. 9. The nitrogen contents of soluble and insoluble did not make distinct difference between the lower and higher potassium level. 10. Though the phosphorus contents were not distinctly different by the potassium level, the lower potassium level made the percentage of phosphorus increased at tuber forming stage accumulating more phosphorus in roots, while the higher potassium level decreased percentage of phosphorus at that stage. 11. The higher potassium level made distinctly high potassium contents than the lower potassium level and increased contents at the tuber forming stage through both conditions. 12. The sodium contents were low in the condition of higher potassium level than the lower potassium level and decreased at tuber forming stage in both conditions, on the contary of potassium. 13. Except the noticeable deficeney of manganese in the growing point of the lower potassium level, mangense and magnesium contents in other organs did not make distinct difference according to the potassium level. 14. Generally more uptake and large absorption rate of phosphorus-32 and potassium-42 were resulted at the higher potassium level, and the most uptake, and the largest absorption rate of phosphorus and potassium-42 (especially potassium-42 at tuber forming stage) were resulted in the condition of higher potassium level and constant temperature which made the highest tuber production. 15. The higher potassium level stimulated the translocation of phoshorus-32 and potassium-42 from roots to shoots while the lower potassium level suppressed or blocked the translocation. 16. Therefore, very large distribution rate of $p^{32}$, $K^{42}$ in shoot, especially, in growing point, compared with roots was resulted in the higher potassium level. 17. The lower potassium level suppressed the translocation of phosporus-32 from roots to shoot more than that of potassium-42. 18. The uptake of potassium-42 and translocation in IPOMOEA BATATAS were more vivid than phosphorus-32. 19. A specific interaction between potassium nutrition and thermoperiod which resulted the largest tuber production etc. was discussed in relation to behaviors of minerals and potasium-42 etc. 20. Also, the specific effect of the lower and higher potassium level on the growth pattern of IPOMOEA BATATAS were discussed in relation to behaviors of minerals and isotopes. 21. An emphasize on the significance of the higher potassium level as well as the interaction with the regulating factor and problem of potassium level (gradient) for crops product ion were discussed from the point of dynamical and variable function of potassium.

  • PDF

Effects of Applying Livestock Manure on Productivity and Organic Stock Carrying Capacity of Summer Forage Crops (가축분뇨시용이 하계사료작물의 생산성 및 유기가축 사육능력에 미치는 영향)

  • Jo, Ik-Hwan;HwangBo, Soon;Lee, Ju-Sam
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.4
    • /
    • pp.421-434
    • /
    • 2008
  • This study was carried out to estimate the selection of appropriate forage crops, proper application levels of livestock manure, and carrying capacity per unit area for organic livestock, as influenced by livestock manure application levels compared with chemical fertilizer to corn and sorghum $\times$ sorghum hybrid, in order to produce organic forages by utilizing livestock manure. For both corns and sorghum $\times$ sorghum hybrids, no fertilizer plots had significantly (p<0.05) lower annual dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) yields than those of other plots, whereas the N+P+K plots ranked the highest yields, followed by 150% cattle manure plots and 100% cattle manure plots. Dry matter, CP and TDN yields of cattle manure plots were significantly (p<0.05) higher than those of no fertilizer and P+K plots. In applying cattle manure, the yields of cattle slurry plots tended to be a little higher than those of composted cattle manure plots. Assuming that corns and sorghum $\times$ sorghum hybrids produced from this trial were fed at 70% level to 450kg of Hanwoo heifer with 400g of average daily gain, livestock carrying capacity (head/year/ha) ranked the highest in N+P+K plots of the case of corns (mean 6.7 heads), followed by 150% cattle slurry plots (mean 5.6 heads), 150% composted cattle manure plots (mean 4.8 heads), 100% cattle slurry plots (mean 4.4 heads), 100% composted cattle manure plots (mean 4.3 heads), P+K plots (mean 4.1 heads), and no fertilizer plots (mean 3.1 heads). Meanwhile, in case of sorghum $\times$ sorghum hybrids, N+P+K plots (mean 5.7 heads) ranked the highest carrying capacity, followed by $100{\sim}150%$ cattle slurry plots (mean $4.8{\sim}5.2$ heads), 150% composted cattle manure plots (mean 4.7 heads), 100 % composted cattle manure plots (mean 4.3 heads), P+K plots (mean 3.8 heads), and no fertilizer plots (mean 3.4 heads). The results indicated that replacing chemical fertilizer by livestock manure application to cultivation soil for forage crops could enhance not only DM and TDN yields, but also organic stock carrying capacity. In conclusion, it was conceived that organic forage production by reutilizing livestock manure might contribute to reduced environmental pollution and the production of environment friendly agricultural products through resources recycling.

  • PDF

A Study of the Impractical Area and Boundary of an Outer Royal Garden "Hamchunwon" Attached to Gyeonghuigung Palace (경희궁 별원(別苑) 함춘원의 실지(實地) 경역 고찰)

  • Jung, Woo-Jin;Hong, Hyeon-Do;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.26-42
    • /
    • 2022
  • The purpose of this study is to examine and understand the area and the original outer boundaries of Hamchunwon(含春苑), which was the outer royal garden of Gyeonghuigung Palace, which existed before the site of the Russian legation. The results of the study are as follows. First, examining the 3 types of drawings prepared for securing the Russian legation's site and constructing a new building, it was confirmed that two low peaks, which appear to be the original terrain of Hamchunwon, existed in the north and south directions inside the site. According to the initial plan of the of the legation's site, it appears that the entrance of the legation building is connected to the Saemunan-ro in the northwest. However, according to the report made at the time when the Russian temporary minister Veber purchased the legation's site, it was recorded that the site already had a narrow entrance and a dirt road in place, and hence, it was connected to Saemunan-ro. This fact makes it possible to learn that the line of movement for officials and the original gate were located to the northwest of the site planned as the entrance of the legation building towards Hamchunwon. Second, the site was created by cutting the top of the high hill at the time of the construction of the legation building, and as a result, a two tiered staircase typed terrace was built. The ground on which the main building and the secretary's building, etc., were erected was made by cutting the highest peak and solidifying it flat, and a large quantity of soil was used for grading. In the case of the northern area of the main building, the traces of leveling the terrain by cutting the mountains are apparent, and an observation typed garden with a walking path and pavilion was formed by utilizing the physical environment equipped with an easy view. This may be considered as a use which is consistent with the topographical conditions of creating an outer royal garden to block the civilian views on a high terrain overlooking the palace. Third, Hamchunwon's fences were partially exposed in the photos from the 1880s through the 1890s, which demonstrate the spatial changes made around the US, UK, and the Russian legations. As a result of the photo analysis performed, Hamchunwon occupies the northern area of the Russian legation's site, and it is estimated that the north, west, and east walls of the legation resembled those of Hamchunwon. The area to the south of the Russian legation was originally a place made available for civilian houses, and it was possible to examine the circumstances of purchasing dozens of civilian houses and farmlands according to various materials. Fourth, Hamchunwon, which was formed as the outer royal garden of Gyeongdeokgung Palace of Lord Gwanghaegun, lost its sense of place as an outer royal garden when the entire building of Gyeonghuigung Palace was torn down and used as a construction members during the reconstruction of Gyeongbokgung Palace, and faded away as the site was sold to Russia around 1885. The area where Hamchunwon used to be located transformed into a core space of the Russian legation where the main building and garden were located after the construction of the new building. Hence, Hamchunwon, which was limited to the northern area of the Russian legation, does not carry the temporal and spatial context with Gyeongungung Palace and Seonwonjeon which were constructed after 1897, and it is determined that the view of Seonwonjeon as Baehoorim or Baegyeongrim is not valid.