• Title/Summary/Keyword: Soil degradation

Search Result 851, Processing Time 0.036 seconds

Effect of Environmental Conditions on the Biodegradation of Cellulose Fibers - Effect of Humidity in Soil - (환경 조건에 따른 셀룰로스계 섬유의 생분해성 - 토양 수분율을 중심으로 -)

  • Kang, Yun-Kyung;Park, Chung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1027-1036
    • /
    • 2005
  • Based on the correlation analysis result of preceding research, the biodegradabilities of cellulose fibers were closely related to the moisture regain of the samples, which reflects the hydrophilicity and internal structure of the fibers. In addition to this factor, it was expected that the biodegradation conditions influence the biodegradability of fibers. In this study, widely used cellulose fibers including cotton, rayon, and acetate were used. The biodegradabilities of cellulose fibers were measured by soilburial test, and then the degradation behaviors based on each condition were compared. Moreover, the effects of degradation conditions such as humidity of the soil were investigated. Changes in the internal structure of samples were also observed by X-ray analysis according to the soil burial time. It was shown that humidity of soil facilitated the degradation of cotton, rayon, and acetate fibers, showing higher degradation rate with higher humidity in soil. This effect was shown to be much greater in the fibers of high moisture regain such as cotton and rayon. In respect of microstructure change, crystallinities and their crystal size of fibers decreased remarkably in the soil of higher humidity. It was revealed that degradation of crystalline area was more dependent on the soil humidity than that of amorphous area.

Effects of Moisture, Temperature, and Characteristics of two Soils on Imazamethabenz Degradation (토양 수분, 온도, 특성이 imazamethabenz 분해에 미치는 영향)

  • Joo, Jin-H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.245-254
    • /
    • 2001
  • Effects of soil moisture and temperature on the degradation rate of imazamethabenz were studied in two soils, a Declo sandy loam soil with 1.5% organic matter and pH of 8.0, and a Pancheri silt loam soil with 2.1% organic matter and pH of 7.7. Soils were incubated for 12 weeks under controlled conditions. Treatments were a factorial arrangements with combinations of three soil moistures (45, 75, 100% of field capacity) and two soil temperatures (20, 30C). Imazamethabenz degradation followed first-order kinetics for all soil moisture-soil temperature combinations. Imazamethabenz degradation rate was proportional to increase of soil moisture and temperature. Soil moisture effect on imazamethabenz degradation was greater when soil moisture was increased from 45 to 75% of field capacity (half-life decreased 2.6 fold) than when moisture increased from 75 to 100% of field capacity (half-life decreased 1.2 fold). Imazamethabenz degradation occurred more rapidly in the Pancheri silt loam than the Declo sandy loam soil. Formation of imazamethabenz acid from imazamethabenz followed a quadratic trend for most soil-moisture-soil temperature combinations. Imazamethabenz acid formation initially increased at earlier stages, but later gradually decreased. In most cases, increasing soil moisture and temperature appeared to accelerate it's acid breakdown to other metabolites.

  • PDF

Behavior of Synthetic Pyrethroid Insecticide Bifenthrin in Soil Environment II) Identification of Degradation Product and Leaching of Bifenthrin in soil (합성 Pyrethroid 계 살충제인 Bifenthrin의 토양환경중 동태 제2보. Bifenthrin의 토양중 분해산물의 동정 및 용탈)

  • Kim, Jang-Eok;Choi, Tae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.125-132
    • /
    • 1992
  • This study was conducted to know degradation products of the synthetic pyrethroid insecticide bifenthrin under soil, aqueous solution and UV-light irradation, and know its movement by leaching in soil. The major degradation product of bifenthrin was identified with 2-methylbiphenyl -3-y1 methanol by HPLC, UV, Mass and NMR under soil, aqueous solution and UV-light irradiation, The main degradation route was hydrolysis of the ester linkage. On exposure to UV-light, bifenthrin was decomposed almost completely in concentrations of 10 and 100 ppm in 24 hr but decomposed about 80% in 1,000 ppm. Bifenthrin was immobile in soil column system and on soil thin-layer chromatography system. Mostly bifenthrin remained in the 0-2.0㎝ layer of soil column and soil TLC.

  • PDF

유기오염물의 분해에 의한 오염토양내 비소종 변화 영향

  • 천찬란;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.347-350
    • /
    • 2002
  • Arsenic speciation changes between As(V) and As(III) are subject to changes in accordance with redox conditions in the environment. It is common to find contaminated sites associated with mixed wastes including both organic pollutants and heavy metals. We conducted microcosm experiment under hypothesis that the co-disposed organic pollutants would influence on the arsenic forms and concentrations, via degradation of the organic pollutants and the consequent impact on the redox conditions in soil. Artificially contaminated soil samples were run for 40 days with control samples without artificial contamination. We noticed arsenic in the contaminated soil showed different behaviour compared with the arsenic in the control soil. The findings indicate degradation of organic pollutants in the contaminated soil influenced on the arsenic speciation and concentrations. A further work is needed to understand the process quantitatively. However, we could confirm that degradation of organic pollutants can influence on the abiotic processes associated with geochemical reactions in contaminated soil. Degradation of organic pollutants can increase the mobility and toxicity of arsenic in soil and sediment by changing redox conditions in the geological media and subsequently from As(V) to As(III).

  • PDF

Modelling land degradation in the mountainous areas

  • Shrestha, D.P.;Zinck, J.A.;Ranst, E. Van
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.817-819
    • /
    • 2003
  • Land degradation is a crucial issue in mountainous areas and is manifested in a variety of processes. For its assessment, application of existing models is not straightforward. In addition, data availability might be a problem. In this paper, a procedure for land degradation assessment is described, which follows a four-step approach: (1) detection, inventory and mapping of land degradation features, (2) assessing the magnitude of soil loss, (3) study of causal factors, and (4) hazard assessment by applying decision trees. This approach is applied to a case study in the Middle Mountain region of Nepal. The study shows that individual mass movement features such as debris slides and slumps can be easily mapped by photo interpretation techniques. Application of soil loss estimation models helps get insight on the magnitude of soil losses. In the study area soil losses are higher in rainfed crops on sloping terraces (highest soil loss is 32 tons/ha/yr) and minimal under dense forest and in irrigated rice fields (less than 1 ton/ha/yr). However there is high frequency of slope failures in the form of slumps in the rice fields. Debris slides are more common on south-facing slopes under rainfed agriculture or in degraded forest. Field evidences and analysis of causal factors for land degradation helps in building decision trees, the use of which for modelling land degradation has the advantage that attributes can be ranked and tested according to their importance. In addition, decision trees are simple to construct, easy to implement and very flexible in adaptations.

  • PDF

Comparison of Biodegradation of pyrene between Rhizosphere Soil and Non-rhizosphere Soil (Rhizosphere 토양과 Non-rhizosphere 토양에서 Pyrene의 분해속도 비교)

  • 김상채;이의상;서성규
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 1998
  • Pyrene is a common petroleum contaminant. This compound is recalcitrant to biological degradation and persists long in contaminated environments. A microcosm experiment was conducted to investigate the degradation rate of pyrene in three different of soil : rhizosphere soil ; non-rhizosphere soil ; and sterilized soil. The degradation rate followed the order of rhizosphere soil)non-rhizosphere soil)sterilized soil. And the rate did not change significantly when organic acids commonly found in the rhizosphere were added to each soil but it seemed to be well related to the increase of the number of microorganisms. Overall, it appears that pyrene is degraded faster in the rhizosphere soil which has the higher microorganism density.

  • PDF

Relationship between Biodegradation of Biosynthetic Plastics, Poly-$\beta$-Hydroxybutyrate, and Soil Temperature (생합성 플라스틱 Poly-$\beta$-Hydroxybutyrate의 생분해와 토양온도의 관계)

  • 조강현;이혜미;조경숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.277-282
    • /
    • 1998
  • The microbial degradation of $poly-{\beta}-hydroxybutyrate$ (PHB) films was studied in soil microco는 incubated at a constant temperature of 2, 10, 20, 30 and $40^{\circ}C$ for up to 49 days. The degradation rate measured through loss of weight was enhanced by incubation at a higher temperature. At the soil temperature $40^{\circ}C$, $poly-{\beta}-hydroxybutyrate$ was rapidly degraded at a decay rate of 3.5% weight loss per day. The degradation of $poly-{\beta}-hydroxybutyrate$ did not affected significantly the chemical properties of soils such as pH and electric conductivity. However, microbial activity of soil in terms of dehydrogenase activity was increased by the degradation of $poly-{\beta}-hydroxybutyrate$.

  • PDF

Study on Subcritical Water Degradation of RDX Contaminated Soil in Batch and Dynamic Mode (배치형과 연속흐름형에 의한 토양 중 RDX의 아임계 분해특성 비교연구)

  • Choi, Jae-Heon;Lee, Hwan;Lee, Cheol-Hyo;Kim, Ju-Yup;Park, Jeong-Hun;Jo, Young-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to compare the degradation characteristics by subcritical water of RDX contaminated soil using batch mode and dynamic mode devices. First, upon application of RDX contaminated soil, RDX treatment efficiency was increased with increasing the temperature in both modes. At 150℃, the treatment efficiency was 99.9%. RDX degradation efficiency got higher with lower ratio of solid to liquid. However, the treatment efficiency in the dynamic mode tended to be decreased at a certain ratio of solid to liquid or lower. The treatment efficiency was increased when it took longer time for the reactions in both modes. As the results of analysis on concentration of treated water after subcritical water degradation, the RDX recovery rate of dynamic and batch modes at 150℃ was 10.5% and 1.5%, respectively. However, both modes showed very similar recovery rates at 175℃ or higher. RDX degradation products were analyzed in treated water after it was treated with subcritical water. According to the results, RDX degradation mechanism was mostly oxidation reaction and reduction reaction was partially involved. Therefore, it suggested that most of RDX in soil was degraded by oxidation of subcritical water upon extraction. According to this result, it was found that both batch and dynamic modes were very effectively applied in the treatment of explosive contaminated soil.

Microbial Degradation of Diazinon in Sudmerged Soil (담수토양내 미생물에 의한 Dazinon의 분해)

  • 김중호;이영하;최종우;이규승
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.139-146
    • /
    • 1989
  • The mechanisms and metabolic products involved in the degradation of an organophosphate insecticide, diazinon, were studied in submerged paddy soil under the laboratory condition at $30^{\circ}C$. Diazinon abatement in non-sterilized soil was more rapid than indicating microbial participation in diazinon in soil. One-half of the original applications was lost in 2 days and less than 5% remained after 7 days. During the same period, dizinon applications increased tha microbial populations in accordance with the monooxygenase and esterase activities in soil. These results suggest that the microbiological factors develop in soil following diazinon application. The esterase and monooxygenase-catalyzing degradation products of diazinon were isolated and tentatively identified by mass spectrometryas 2-isopropyle-6-methyl-4-hydroxy pyrimidine, diazoxon, hydroxydiazinon, and sulfotep.

  • PDF

Residue of Imidacloprid in Hulled Rice and Paddy Soil (논 토양 및 현미중 Imidacloprid의 잔류성)

  • Moon, Young-Hee;Rang, Hee-Hyouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.384-387
    • /
    • 1999
  • The residue of imidacloprid in hulled rice and paddy soil was investigated. In laboratory conditions, the degradation of imidacloprid in the soils followed first-order reaction kinetic. The rate of degradation was influenced by soil temperature and soil type. The half-life of imidacloprid at $18-28^{\circ}C$ was 66.7-96.3 days in the heavy clay soil and 56.8-117.5 days in the clay loam soil. Arrhenius activation energy obtained from the temperature experiment was 25.5 KJ/mol in heavy clay soil and 50.3 KJ/mol in clay loam soil. In paddy field, the degradation of imidacloprid was fast during the initial period but the degradation rate was gradually slow. About 10 % of the initial amount remained in the soil 120 day after the application. The residual amount of imidacloprid in rice was below the detection limit, 0.01 ppm. The residue level in rice was lower than MRL 0.05ppm in Korea.

  • PDF