• Title/Summary/Keyword: Soil damage

Search Result 956, Processing Time 0.03 seconds

Conservation Treatment on the Bamboo Sunblind from the No. 1 Catchment Site in Baesanseongji, Busan (부산 배산성지 1호 집수지 출토 대나무 발 수습 및 보존처리)

  • Park, Ji Hyeon;Park, Jung Hae;Lee, Kwang Hee;Seo, Yeon Ju;Park, Jung Wook;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.536-544
    • /
    • 2021
  • In the present study, safe management and value improvement of bamboo sunblind, which is an item of cultural heritage, were performed by adopting stable conservation treatment methods. The bamboo sunblind used in the present study was excavated from No. 1 catchment site in Baesanseongji, Busan. It was determined that the main material used to make the sunblind was bamboo, and herbal plants were used to weave the bamboo using lacquer as an adhesive agent. All contaminants and soil adhered to the sunblind was removed. Thereafter, the sunblind, which was recovered in the form of blocks, was washed separately after fixing it to a temporary plaster frame and to avoid the blocks from breaking during washing. Then, polyethylene glycol (PEG) impregnation was utilized for the reinforcement treatment. Based on the preliminary test results, the shape of the sunblind was fixed using a stainless-steel frame to prevent physical damage that may occur during the drying process. Thereafter, the bamboo sunblind was vacuum freeze-dried. PEG 20% (in ethyl alcohol) was applied as a surface treatment agent for stabilization the sunblind. After the surface treatment, the bamboo sunblind were joined together to fit the maximum width, and the rectangular shape of the sunblind was restored-as best as possible-while filling in the missing parts by maximizing the use of unknown members such as in the disturbed layers below bamboo sunblind surface. The conservation treatment was completed by fixing the bamboo sunblind into the fabricated frame.

A Study on the Safety Ratio of Reservoir Embankment by Seismic Reinforcement Section Shape (내진보강 단면형상에 따른 국내 저수지 제방의 안전율에 대한 검토)

  • Lim, Seonghun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.343-355
    • /
    • 2021
  • Agricultural reservoirs seek human convenience by supplying agricultural water and providing flood damage effects and rest areas at the same time, but preventing them from aging reservoirs and earthquakes is important. The safety of levees is influenced by field material properties such as soil parameter values of the granular materials that make up the levees, but since precision safety diagnosis or general literature values are diverted, the final safety factors are limited to material properties alone. Since safety factors are determined by physical characteristic values and embankment shapes and have a significant impact on safety factors, accurate contemplation is required when examining reinforced cross sections. Therefore, this study analyzed the case of reasonable and economical reinforcement intersections when designing '◯◯reservoir' in Goheung-geun, Jeollanam-do using the GEP-SLOPE program to enable rational economic design of reinforcement intersections through repeated reviews. As a result of reducing and analyzing the first, second, and third seismic reinforcement of the levees, it was confirmed that the safety ratio was secured even with a significantly smaller amount of reinforcement than the first, second, and lower slopes by obtaining design standards of 1.20. In addition, when determining all seismic reinforcement cross-sectional shapes, it was confirmed that the shape that reinforces only the lower side rather than the upper side of the slope and the entire slope was economical with minimized cross-sectional reinforcement.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

Analysis of Equivalent Torque of 78 kW Agricultural Tractor during Rotary Tillage (78 kW급 농업용 트랙터의 로타리 경운 작업에 따른 등가 토크 분석)

  • Baek, Seung-Min;Kim, Wan-Soo;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.359-365
    • /
    • 2019
  • This paper is a basic study for the performance evaluation, durability improvement and optimal design of tractor transmission. The engine torque of the 78 kW agricultural tractor during rotary tillage was measured using CAN communication. It was calculated with equivalent torque and then analyzed. In order to develop a reliable tractor, it is important to convert measured torque in various agricultural operations into equivalent torque and analyze it. The equivalent torque was calculated using Palmgren-Miner's rule, which is a representative cumulative damage law. The equivalent torque of rotary tillage period and steering period are 229.2 and 136.7 Nm, respectively. The maximum and average torque during rotary tillage period are 336.0 and 234.4 Nm, respectively. The maximum and average torque of the steering period are 288.0 and 134.6 Nm, respectively. The engine torque in rotary tillage period is higher than in the steering period because of cultivation of soil through PTO. The maximum and rated torque of engine are 387.0 and 323.0 Nm, respectively, which are 183% and 136% higher than the equivalent torque during rotary tillage and of steering section. Because transmission of agricultural tractor in Korea companies is generally designed by the rated torque of engine, there is a difference from measured torque during agricultural operations. Therefore, it is necessary to consider it for optimal design.

An Experimental and Numerical Study on the Stemming Effect of a Polymer Gel in Explosive Blasting (화약발파에서 폴리머 겔의 전색효과에 관한 실험적 및 수치해석적 연구)

  • Baluch, Khaqan;Kim, Jung-Gyu;Ko, Young-Hun;Kim, Seung-Jun;Jung, Seung-Won;Yang, Hyung-Sik;Kim, Youg-Kye;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.35-47
    • /
    • 2018
  • In this study, several concrete-block blast tests and AUTODYN numerical analyses were conducted to analyze the effects of different stemming and coupling materials on explosion results. Air, sand, and polymer gel were used as both the stemming and coupling materials. The stemming and coupling effects of these materials were compared with those of the full-charge condition. Soil-covered or buried concrete blocks were used for field crater tests. It was found from the concrete block tests and numerical analyses that both the crater size and the peak pressure around the blast hole were higher when the polymer gel was used than when the sand and the decoupling condition were used. The numerical analyses revealed the same trend as those of the field tests. Pressure peaks in concrete block models were calculated to be 37, 30, and 16 MPa, respectively, for the cases of the polymer gel, sand, and no stemming and decoupling condition. The pressure peak was 52 MPa in the case of full-charge condition, which was the highest pressure. But the damage area for the case was smaller than that obtained from the use of polymer gel. Full-charge was also used as a reference test.

Experimental Assessment and Specimen Height Effect in Frost Heave Testing Apparatus (동상시험장비의 실험적 검증 및 시료크기의 영향에 관한 연구)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Frost heave is one of the representative engineering characteristics in cold regions. In South Korea, which is located in seasonal frost area, structural damage caused by frost heave and thaw happens and the need for research on the frost heave is increasing. In this paper, newly developed transparent temperature-controllable cell is used to focus on the frost heave. Frost susceptible artificial soil is used to analyze water intake rate which is one of the important factors in frost susceptibility criteria. Frost heave rate and water intake rate have similar behavior after heave by freezing of pore water converges. O-ring installed in the upper pedestal to measure water intake rate generates side friction between the inner wall of the freezing cell and O-ring, thereby hindering frost heave. Therefore, the frost susceptibility criteria using the water intake rate is not reliable. It is appropriate to use frost heave rate which has similar behavior with water intake rate. Frost heave tests were performed under two different specimen heights. Overburden pressure, temperature gradient and dry unit weight were set under similar state. Based on laboratory testing results, frost heave is independent on the specimen height.

A Case Study on Earthquake-induced Deformation of Quay Wall and Backfill in Pohang by 2D-Effective Stress Analysis (2차원 유효응력 해석에 의한 지진시 포항 안벽구조물의 변형 사례 분석)

  • Kim, Seungjong;Hwang, Woong-Ki;Kim, Tae-Hyung;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.15-27
    • /
    • 2019
  • The purpose of this study is to investigate the mechanism about damages occurring at quay wall and backfill in Youngilman Port during Pohang earthquake (M5.4) on November 15, 2017. In the field investigation, the horizontal displacement of the caisson occurred between 5 cm and 15 cm, and the settlement at backfill occurred higher than 10 cm. 2D-effective Stress Analysis was performed to clarify the mechanism for the damage. The input earthquake motion used acceleration ($3.25m/s^2$) measured at bedrock of Pohang habor. Based on a numerical analysis, it was found that the effective stress decreased due to the increase of excess pore pressure in the backfill ground and the horizontal displacement of the caisson occurred by about 14 cm, and the settlement occurred by about 3 cm. In backfill, the settlements occurred between 6 cm and 9 cm. This is similar to field investigation results. Also, it was found that the backfill soil was close to the Mohr-Coulomb failure line due to the cyclic loading from the effective stress path and the stress-strain behavior. It may be related to decreasing of bearing capacity induced by the reduction of effective stress caused by the increase of the excess pore water pressure.

Seismic Fragility of Bridge Considering Foundation and Soil Structure Interaction (교량기초 종류 및 지반-구조물 상호작용을 고려한 지진취약도 분석)

  • Kim, Sun-Jae;An, Hyo-Joon;Song, Ki-il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.129-137
    • /
    • 2020
  • In performing the structural analysis, the foundation is considered to be a fixed end as a plastic hinge model. In this study, the displacements of the foundation, pier, and shoe were compared when the foundation modeled as a fixed end, a shallow foundation constructed on bedrock of 2m depth, and a pile foundation constructed in the 10m to 20m depth of bedrock. The shear force was also compared, and the probability of damage was calculated and compared for the critical condition. When calculated as a fixed end, the displacement of the foundation converged to 0mm, but the shallow foundation built on the bedrock with a depth of 2m caused relatively displacement, and the pile foundation constructed to contact the bedrock with a depth of 18m caused a larger displacement. In addition, it was analyzed that the displacement of the foundation, which is the lower structure, affects the displacement of the super structure, but the difference in shear force applied to the foundation was insignificant in the three cases. There was no difference between the shallow foundation and the pile foundation in the influence on the displacement of the top of the pier, but there was a big difference from the analysis assuming as a fixed end.